

Multiparameter Photometer for Water & Wastewater

Dear
Customer,Thank you for choosing a Hanna Instruments product.
Please read this instruction manual carefully before using this instrument.
This manual will provide you with the necessary information for correct use of this
instrument, as well as a precise idea of its versatility.
If you need additional technical information, do not hesitate to e-mail us at
tech@hannainst.com or view our worldwide contact list at www.hannainst.com.

All rights are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner, Hanna Instruments Inc., Woonsocket, Rhode Island, 02895, USA.

TABLE OF CONTENTS

TABLE OF CONTENTS

1.	PRELIMINARY EXAMINATION	7
2.	SAFETY MEASURES	7
3.	SPECIFICATIONS	8
4.	ABBREVIATIONS	9
5.	DESCRIPTION	10
	5.1. GENERAL DESCRIPTION & INTENDED USE	10
	5.2. PRECISION & ACCURACY	10
	5.3. FUNCTIONAL DESCRIPTION	11
	5.4. PRINCIPLE OF OPERATION	12
	5.5. OPTICAL SYSTEM	13
6.	GENERAL OPERATIONS	14
	6.1. POWER CONNECTION & BATTERY MANAGEMENT	14
	6.2. MODE SELECTION	
	6.3. GENERAL SETUP	15
	6.4. CONTEXTUAL HELP	18
7.	LOGGING DATA & DATA MANAGEMENT	19
	7.1. LOGGING DATA	19
	7.2. ADDING SAMPLE & USER NAMES TO LOG DATA	19
	7.3. DATA MANAGEMENT	20
8.	PHOTOMETER MODE	21
	8.1. METHOD SELECTION	21
	8.2. COLLECTING & MEASURING SAMPLES AND REAGENTS	21
	8.3. CUVETTE PREPARATION	22
	8.4. TIMERS & MEASUREMENT FUNCTIONS	24
	8.5. CHEMICAL FORMULA & UNIT CONVERSION	24
	8.6. METER VALIDATION & CAL CHECK	25
	8.7. ABSORBANCE MEASUREMENTS	26
9.	PROBE MODE	27
	9.1. pH MEASUREMENT	27
	9.2 pH CALIBRATION	

	9.3. pH MESSAGES & WARNINGS	29
	9.4. pH GLP	30
	9.5. pH ELECTRODE CONDITIONING & MAINTENANCE	31
10.	METHOD PROCEDURES	33
	10.1. ALKALINITY	33
	10.2. ALKALINITY, MARINE	35
	10.3. ALUMINUM	37
	10.4. AMMONIA LOW RANGE	41
	10.5. AMMONIA MEDIUM RANGE	44
	10.6. AMMONIA HIGH RANGE	47
	10.7. BROMINE	50
	10.8. CALCIUM	52
	10.9. CALCIUM, MARINE	55
	10.10. CHLORIDE	
	10.11. CHLORINE DIOXIDE	60
	10.12. CHLORINE DIOXIDE, RAPID METHOD	64
	10.13. CHLORINE, FREE	68
	10.14. CHLORINE, FREE ULTRA LOW RANGE	
	10.15. CHLORINE, TOTAL	73
	10.16. CHLORINE, TOTAL ULTRA LOW RANGE	77
	10.17. CHLORINE, TOTAL ULTRA HIGH RANGE	79
	10.18. CHROMIUM(VI) LOW RANGE	81
	10.19. CHROMIUM(VI) HIGH RANGE	
	10.20. COLOR OF WATER	85
	10.21. COPPER LOW RANGE	87
	10.22. COPPER HIGH RANGE	89
	10.23. CYANURIC ACID	91
	10.24. FLUORIDE LOW RANGE	
	10.25. FLUORIDE HIGH RANGE	95
	10.26. HARDNESS, CALCIUM	98
	10.27. HARDNESS, MAGNESIUM 1	
	10.28. HARDNESS, TOTAL LOW RANGE 1	04

TABLE OF CONTENTS

10.29.	HARDNESS, TOTAL MEDIUM RANGE	107
10.30.	HARDNESS, TOTAL HIGH RANGE	110
10.31.	HYDRAZINE	113
10.32.	IODINE	115
10.33.	IRON LOW RANGE	117
10.34.	IRON HIGH RANGE	120
10.35.	IRON(II)	122
10.36.	IRON(II)/(III)	125
10.37.	MAGNESIUM	129
10.38.	MANGANESE LOW RANGE	131
	MANGANESE HIGH RANGE	
10.40.	MOLYBDENUM	137
10.41.	NICKEL LOW RANGE	140
10.42.	NICKEL HIGH RANGE	143
10.43.	NITRATE	145
10.44.	NITRITE, MARINE ULTRA LOW RANGE	148
10.45.	NITRITE LOW RANGE	150
10.46.	NITRITE HIGH RANGE	152
10.47.	OXYGEN, DISSOLVED	154
10.48.	OXYGEN SCAVENGERS (CARBOHYDRAZIDE)	157
10.49.	OXYGEN SCAVENGERS (DIETHYLHYDROXYLAMINE) (DEHA)	160
10.50.	OXYGEN SCAVENGERS (HYDROQUINONE)	163
	OXYGEN SCAVENGERS (ISO-ASCORBIC ACID)	
10.52.	OZONE	169
10.53.	pH	173
	PHOSPHATE, MARINE ULTRA LOW RANGE	
10.55.	PHOSPHATE LOW RANGE	177
	PHOSPHATE HIGH RANGE	
10.57.	POTASSIUM	182
10.58.	SILICA LOW RANGE	185
10.59.	SILICA HIGH RANGE	188
10.60.	SILVER	191

5
\geq
0
Ŭ
0

10.61. SULFATE	195
10.62. SURFACTANTS, ANIONIC	197
10.63. ZINC	201
11. WARNINGS & ERRORS	203
12. STANDARD METHODS	206
13. ACCESSORIES	209
13.1. REAGENT SETS	209
13.2. pH ELECTRODES	213
13.3. pH SOLUTIONS	
13.4. OTHER ACCESSORIES	216
CERTIFICATION	218
RECOMMENDATIONS FOR USERS	218
WARRANTY	218

1. PRELIMINARY EXAMINATION

Remove the instrument and accessories from the packaging and examine it carefully. For further assistance, please contact your local Hanna Instruments Office or email us at tech@hannainst.com. Each HI83300 is delivered in a rugged carrying case and is supplied with:

- Sample cuvette (4 pcs.)
- Sample cuvette cap (4 pcs.)
- Cloth for wiping cuvettes
- Scissors
- USB cable
- 5 Vdc power adapter
- 60 mL glass bottle
- Instrument quality certificate
- Instruction manual

Note: Save all packing material until you are sure that the instrument works correctly. Any damaged or defective item must be returned in its original packing material with the supplied accessories.

2. SAFETY MEASURES

- The chemicals contained in the reagent kits may be hazardous if improperly handled.
- Read the Safety Data Sheets (SDS) before performing tests.
- Safety equipment: Wear suitable eye protection and clothing when required and follow instructions carefully.
- Reagent spills: If a reagent spill occurs, wipe up immediately and rinse with plenty of water. If reagent contacts skin, rinse the affected area thoroughly with water. Avoid breathing released vapors.
- Waste disposal: For proper disposal of reagent kits and reacted samples, contact a licensed waste disposal provider.

3. SPECIFICATIONS

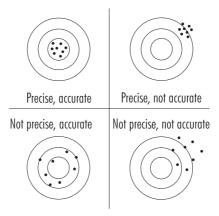
Measurement Channels		5 x optical channels 1 x digital electrode channel (pH measurement)	
	Range	0.000 to 4.000 Abs	
	Resolution	0.001 Abs	
	Accuracy	±0.003 Abs @ 1.000 Abs	
	Light source	Light Emitting Diode	
Photometer	Bandpass filter bandwidth	8 nm	
	Bandpass filter wavelength accuracy	±1.0 nm	
	Light detector	Silicon photocell	
	Cuvette types	Round, 24.6 mm diameter	
	Number of methods	68	
	Range	-2.00 to 16.00 pH (\pm 1000.0 mV)*	
	Resolution	0.01 pH (0.1 mV)	
	Accuracy	±0.01 pH (±0.2 mV) @ 25 °C / 77 °F	
Probe	Temperature compensation	ATC, -5.0 to 100.0 °C (23.0 to 212.0 °F)*	
	Calibration	two-point, from five available buffers (4.01, 6.86, 7.01, 9.18, 10.01 pH)	
	Electrode	Intelligent pH / temperature electrode	
	Range	-20.0 to 120.0 °C (-4.0 to 248.0 °F)	
Temperature	Resolution	0.1 °C (0.1 °F)	
	Accuracy	\pm 0.5 °C @ 25 °C (\pm 0.9 °F @ 77 °F)	
	Logging	1000 readings (mixed photometer and electrode)	
	Display	128 x 64 pixel B/W LCD with backlight	
	USB-A (Host) functions	Mass-storage host	
	USB-B (Device) functions	Power input, mass-storage device	
	Battery life	> 500 photometer measurements or 50 hours of continuous pH measurement	
Additional Specifications	Power supply	5 Vdc USB 2.0 power adapter / type micro-B connector 3.7 Vdc Li-polymer rechargeable battery, non-serviceable	
	Environment	0 to 50 °C (32 to 122 °F) 0 to 95% RH, non-serviceable	
	Dimensions	206 x 177 x 97 mm (8.1 x 7.0 x 3.8")	
	Weight	1.0 kg (2.2 lbs.)	

*Limits will be reduced to actual probe / sensor limits.

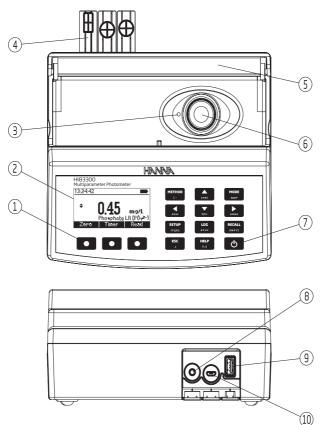
4. ABBREVIATIONS

Abs	Absorbance
GLP	Good Laboratory Practice
NIST	National Institute of Standards and Technology
EPA	US Environmental Protection Agency
g/L	grams per liter (parts per thousand, ppt)
μ g/L	micrograms per liter (parts per billion, ppb)
mg/L	milligrams per liter (parts per million, ppm)
HR	High Range
LR	Low Range
MR	Medium Range
UHR	Ultra High Range
ULR	Ultra Low Range

5. DESCRIPTION


5.1. GENERAL DESCRIPTION & INTENDED USE

H183300 multiparameter photometer is a compact and versatile meter with two measurement modes, Photometer and Probe. Photometer mode includes a CAL Check[™] feature and 68 different methods that cover a wide variety of applications, making it ideal for both benchtop and portable operations. With the CAL Check[™] feature users are able to validate the performance of the instrument and apply a user calibration (if necessary). Hanna Instruments CAL Check[™] cuvettes are made with NIST traceable standards. Probe mode uses a digital pH probe with a one or two-point calibration.


- Digital electrode input for pH measurements
- Certified CAL Check cuvettes to confirm meter functionality
- Dual purpose micro-USB flash drive
- Lithium polymer rechargeable battery
- Auto-off
- Absorbance mode
- User and sample name entry
- GLP features

5.2. PRECISION & ACCURACY

Precision is how closely repeated measurements are to one another. Precision is usually expressed as standard deviation. Accuracy is defined as the closeness of a test result to the true value. Although good precision suggests good accuracy, precise results can be inaccurate. The figure explains these definitions. For each method, the accuracy is expressed in the related measurement section.

5.3. FUNCTIONAL DESCRIPTION

- 1. Splash-proof keypad
- 2. Liquid Crystal Display (LCD)
- 3. Indexing mark
- 4. Protective port covers
- 5. Light-blocking cover panel
- 6. Cuvette holder
- 7. ON/OFF power button
- 8. 3.5 mm TRRS (jack) input for digital electrodes
- 9. Standard USB host connector for data transfer to a USB flash drive
- 10. Micro-USB device connector for power or PC interface

Keypad Description

The keypad contains 12 direct keys and 3 functional keys with the following functions:

Press the functional key to perform the function displayed above it on the LCD.

Press to access the list of photometer methods.

Press to move up in a menu or a help screen, to increment a set value or to access second level functions.

Press to toggle between photometer and probe (pH electrode) mode.

Press to move left in a menu or to decrement a set value.

Press to move down in a menu or a help screen, to decrement a set value or to access second level functions.

Press to move right in a menu or to increment a set value.

Press to access the setup screen.

Press to log the current reading.

Press to review saved logs.

Press to exit the current screen.

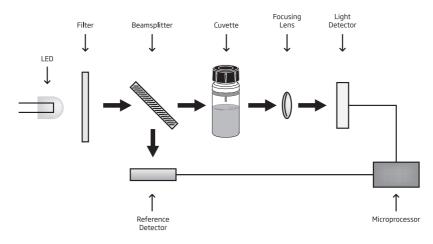
Press to display the help screen.

5.4. PRINCIPLE OF OPERATION

Absorption of light is a typical phenomenon of interaction between electromagnetic radiation and matter. When a light beam crosses a substance, some of the radiation may be absorbed by atoms, molecules or crystal lattices. Photometric chemical analysis is based on specific chemical reactions between a sample and reagent to produce a light-absorbing compound.

If pure absorption occurs, the fraction of light absorbed depends both on the optical path length through the matter and on the physical-chemical characteristics of the substance according to the Lambert-Beer Law. If all other factors are constant, the concentration "c" can be calculated from the absorbance of the substance.

Lambert Beer Law:


$$\begin{array}{l} -\log \, \mathrm{I/I_o} = \epsilon_\lambda \, \mathrm{c} \, \mathrm{d} \\ & \quad \mathrm{or} \\ \mathrm{A} = \epsilon_\lambda \, \mathrm{c} \, \mathrm{d} \end{array}$$

 $I_o =$ intensity of incident light beam

- I = intensity of light beam after absorption
- $\epsilon_{\lambda}=~$ molar extinction coefficient at wavelength λ
- c = molar concentration of the substance

d = optical path through the substance

5.5. OPTICAL SYSTEM

Instrument Block Diagram

The internal reference system (reference detector) of the HI83300 photometer compensates for any drifts due to power fluctuations or ambient temperature changes, providing a stable source of light for your blank (zero) measurement and sample measurement.

LED light sources offer superior performance compared to tungsten lamps. LEDs have a much higher luminous efficiency, providing more light while using less power. They also produce little heat, which could otherwise affect electronic stability. LEDs are available in a wide array of wavelengths, whereas tungsten lamps have poor blue / violet light output.

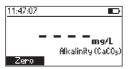
Improved optical filters ensure greater wavelength accuracy and allow a brighter, stronger signal to be received. The end result is higher measurement stability and less wavelength error.

A focusing lens collects all of the light that exits the cuvette, eliminating errors from cuvette imperfections and scratches, eliminating the need to index the cuvette.

6. GENERAL OPERATIONS

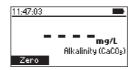
6.1. POWER CONNECTION & BATTERY MANAGEMENT

The meter can be powered from an AC / DC adapter (included) or from the built-in rechargeable battery.

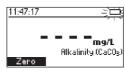

The meter will perform an auto-diagnostic test when it is first powered on. During this test, the Hanna Instruments logo will appear on the LCD. After 5 seconds, if the test was successful, the last method used will appear on the display.

The battery icon on the LCD will indicate the battery status:

• battery is charging from external adapter



• battery capacity (no external adapter)


• battery exhausted (no external adapter)

• battery fully charged (meter connected to AC / DC adapter)

• battery near 0% (no external adapter)

To conserve battery, the meter will turn off automatically after 15 minutes of inactivity (30 minutes after a Zero measurement). If a photometer measurement is on the screen, an auto-log is created before shutdown.

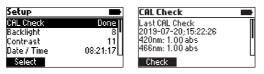
6.2. MODE SELECTION

The HI83300 has two operational modes: Photometer and Probe.

Photometer mode enables on-demand measurement of a cuvette using the integrated optical system.

Probe mode enables continuous measurement using a Hanna digital electrode connected to the 3.5 mm port.

To switch between Photometer mode and Probe mode, use the MODE key.


Note: The active mode cannot be switched while in Setup, Recall or Method menus.

6.3. GENERAL SETUP

Press the SETUP key to enter in Setup menu, highlight desired option using the **AV** keys and press Select.

CAL Check (Photometer Mode Only)

Press **Select** to enter the CAL Check screen. The date, time and values for the last CAL Check are displayed on the screen. To start a new CAL Check press **Check** and follow the prompts on the screen. See METER VALIDATION & CAL CHECK for additional information.

Temperature Unit (Probe Mode Only)

Option: °C or °F

Press the functional key to select the desired temperature unit.

Setup	
Temperature Unit	°C
Backlight	5 1
Contrast	11
Date / Time	15:01:33
°F	_

Backlight

Values: 0 to 8

Press **Modify** to access the backlight intensity. Use the functional keys or the **I** keys to increase or decrease the value. Press **Accept** to confirm or press the **ESC** key to return to the **Setup** menu without saving the new value.

Setup		Backligh	t	⊂G
CAL Check	Done			
Backlight	84	0		8
Contrast	11		_	
Date / Time	08:23:25		5	
Modify		Accept	4	

Contrast

Values: 0 to 20

Press Modify to change the display's contrast. Use the functional keys or the **I** keys to increase or decrease the value. Press Accept to confirm the value or the ESC key to return to the Setup menu without saving the new value.

______ 20

Setup		Contrast	
CAL Check	Done		
Backlight	8 4	0	
Contrast	11		~
Date / Time	08:23:52		6
Modify		Accept	

Date & Time

Press Modify to change the date and time. Press the functional keys or the **keys** to highlight the value to be modified (year, month, day, hour, minute or second). Use the **keys** to change the value. Press Accept to confirm or ESC key to return to the Setup without saving the new date or time.

Time Format

Option: AM/PM or 24-hour

Press the functional key to select the desired time format.

Setup	
Backlight	5
Contrast	11
Date / Time	13:35:59
Time Format	24-hour
AM/PM	

Date Format

Option: DD/MM/YYYY, MM/DD/YYYY, YYYY/MM/DD, YYYY-MM-DD, Mon DD, YYYY, DD-Mon-YYYY, YYYY-Mon-DD

Press **Modify** to change the date format. Use the ▲▼ keys to select the desired format. Press **Select** to confirm or the **ESC** key to return to the **Setup** menu without saving the new format.

Setup		Date Format	
Contrast	11.	YYYY-MM-DD	
Date / Time	13:36:10	Mon DD, YYYY	
Time Format	24 hour	DD-Mon-YYYY	
Date Format	Mon DD, YYYY	YYYY-Mon-DD	
Modify		Select	

Decimal Separator

Option: Comma (,) or Period (.)

Press the functional key to select the desired decimal separator. The decimal separator is used on the measurement screen and CSV (Comma-Separated Values) files.

Setup	
Date / Time	13:36:27
Time Format	24 hour
Date Format	Mon DD, YYYY
Decimal Separ	ator •
,	

Language

Option: Português, Deutsch, English, Español, Français, Italiano, Dutch

Press Modify to change the language. Use the AV keys to select the desired language. Press Select to change the language.

Setup		Language	<u></u>
Decimal Separator	•П	English	
Language	English	Español	
Beeper		Français	1
Instrument ID	000000	Italiano	U
Modify		Select	

Beeper

Option: Enable or Disable

When enabled, a short beep is heard every time a key is pressed. A long beep alert sounds when the pressed key is not active or an error is detected. Press the functional key to enable or disable the beeper.

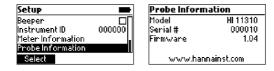
Setup	
Date Format	Mon DD, YYYY
Decimal Separ	ator •
Language	English
Beeper	
Enable	

Instrument ID

Option: 0 to 999999

This option is used to set the instrument's ID (identification number). Press Modify to access the instrument ID screen. Use the functional keys or the **A** keys to highlight the digit to be modified. Press the **AV** keys in order to set the desired value. Press **Accept** to confirm the value or press the ESC key to return to the Setup menu without saving the new value.

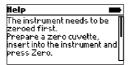
Setup		Instrument ID	ංල
Decimal Separator Language Beeper Instrument ID	English 123456	÷ 12345	
Modify		Accept	•


Meter Information

Press Select to view the model, serial number, firmware version and selected language. Press the ESC key to return to the Setup menu.

Setup	ļ	Meter Infor	mation
Language	English	Model	HI83300
Beeper		Serial #	AAA00000000
Instrument ID	000000	Firmware	1.00
Meter Information		Language	English
Select		ատա.ի	annainst.com

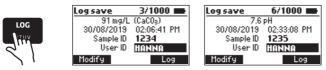
Probe Information (pH Mode Only)


Press **Select** to view model number, serial number and firmware version for the connected probe. Press the **ESC** key to return to the **Setup** menu.

6.4. CONTEXTUAL HELP

HI83300 offers an interactive contextual help mode that assists the user at any time.

To access the help screen press the **HELP** key. The instrument will display additional information related to the current screen. To read all the available information, scroll the text using the \blacktriangle keys. Press the **ESC** key to return to the previous screen.



7. LOGGING DATA & DATA MANAGEMENT

The instrument features a data log function to help you keep track of all your analysis. The data log can hold 1000 individual measurements. Storing, viewing and deleting the data is possible using the LOG and RECALL keys.

7.1. LOGGING DATA

Press the LOG key and the last valid measurement will be stored with a date and time stamp. Only valid measurements can be stored.

7.2. ADDING SAMPLE & USER NAMES TO LOG DATA

A sample ID and user ID can be added to the saved log. Use the **A** keys to highlight the Sample ID or User ID then press **Modify**. Sample ID and user ID are entered using the alphanumeric multi-tapping keypad.

Log save	21/1000 💼
14 mg/L	(Mg2+)
Jan 02,2019	10:06:09
Sample ID	
User ID	
Modify	Log

Enter one character at a time by pressing the key with the assigned character repeatedly until the desired character is highlighted. For reference, a list of the characters available for the current key will be shown under the text box.

The character will be entered after a two-second delay or after another key is pressed.

Sample ID	Sample ID
Sam	Sam
MN0 mno 6	
Accept 🛛 🖌 Clear	Accept 🛛 🖌 Clear

Press Accept to update the sample or user ID.

Press ◀ functional key to delete the last character.

Press Clear to delete all of the characters.

Press the ESC key to discard all changes and return to the previous screen.

7.3. DATA MANAGEMENT

Viewing & Deleting

Data can be viewed, deleted and exported to a USB drive or a PC by pressing the **RECALL** key. Use the \blacktriangle keys to scroll through the saved logs. Press **Info** to view additional information about the selected log.

Log Rec	all	5/5 🗖	e Log	Info	5/5 🗉
30/08 30/08 30/08 30/08 Info	1.40 mg/l 2.00 mg/l 91 mg/l 87 mg/l Export	_NH₃-N _CaCO₃	Chlor		3:01 PM
2	m				

Use Delete to erase logged data. After pressing Delete the prompt on the display will confirm the action.

Delete Meter Log	Delete All Meter Logs
Do you want to delete the selected log?	Do you want to delete all logs?
Yes No Del All	Yes No

Press No or the ESC key to return to the previous screen.

Press Yes to delete the selected log.

Press **Del All** to erase all the logged data. If **Del All** is pressed the prompt on the display will confirm the action. Press **Yes** to delete all logged data, **No** or the **ESC** key to return to the log recall.

Data Export

Log data can be exported to a USB flash drive or to a PC. To access data export functions, press the **RECALL** key then **Export**.

Use the $\blacktriangle \nabla$ keys to select the desired export location.

For export to flash drive, insert the USB flash drive into the dedicated port at the back of the meter labeled HOST USB, then follow the on-screen prompts.

For export to PC, connect the meter to a PC using the supplied micro-USB cable. Insert the cable into the port at the back of the meter labeled PC PWR. Follow the on-screen prompts. When the meter says PC connected, the meter will appear as a removable disk. Use a file manager (such as Windows Explorer or Mac Finder) to move the file from the meter to the PC.

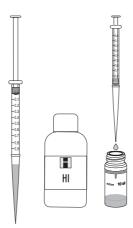
Log data is exported as a single file (HI83300.csv) containing all logged photometer and probe data. The CSV file may be opened with a text editor or spreadsheet application.

8. PHOTOMETER MODE

8.1. METHOD SELECTION

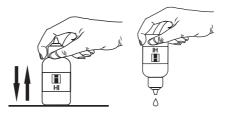
In order to select the desired method press the **METHOD** key and a screen with the available methods will appear.

Press the **AV** keys to highlight the desired method. Press **Select**.



After the desired method is selected, follow the procedure described in the related section. Before performing a method, read all the instructions carefully.

8.2. COLLECTING & MEASURING SAMPLES AND REAGENTS

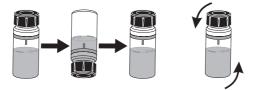

Proper Use of Syringe

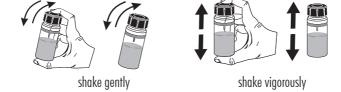
- 1. Push the plunger completely into the syringe and insert the tip into the solution.
- 2. Pull the plunger up until the lower edge of the seal is exactly on the mark for the desired volume.
- 3. Take out the syringe and clean the outside of the syringe tip, be sure that no drops are hanging on the tip of the syringe. Then, keeping the syringe in a vertical position, push the plunger down into the syringe, the desired volume has been delivered.

Proper Use of Dropper Bottle

- 1. Tap the dropper on the table several times.
- 2. Remove the cap and wipe the outside of the tip with a cloth.
- 3. Keep the dropper bottle in a vertical position while dosing the reagent.

Proper Use of Powder Packet


- 1. Use scissors to open the powder packet.
- 2. Push the edges of the packet to form a spout.
- 3. Pour out the content of the packet.


8.3. CUVETTE PREPARATION

Proper mixing is very important for reproducibility of the measurements. The proper mixing technique for each method is listed in the method procedure.

(a) Invert the cuvette a couple of times or for a specified time: hold the cuvette in the vertical position. Turn the cuvette upside-down and wait for all of the solution to flow to the cap end, then return the cuvette to the upright vertical position and wait for all of the solution to flow to the cuvette bottom. This is one inversion. The correct speed for this mixing technique is 10 to 15 complete inversions in 30 seconds. This mixing technique is indicated with "invert to mix" and one of the following icons:

(b) Shaking the cuvette, moving the cuvette up and down. The movement may be gentle or vigorous. This mixing technique is indicated with "shake gently" or "shake vigorously", and one of the following icons:

(c) Swirl the cuvette gently to mix the solution. This mixing technique is indicated with one of the following icons:

In order to avoid reagent leaking and to obtain more accurate measurements, close the cuvette first with the supplied High-Density Polyethylene (HDPE) plastic stopper and then the black cap.

Whenever the cuvette is placed into the measurement holder, it must be dry outside and free of fingerprints, oil and dirt. Wipe it thoroughly with HI731318 microfiber cleaning cloth or a lint-free wipe prior to insertion. Shaking the cuvette can generate bubbles in the sample, causing higher readings. To obtain accurate measurements, remove such bubbles by swirling or by gently tapping the cuvette.

Do not let the reacted sample stand too long after reagent is added. For best accuracy, respect the timings described in each specific method.

It is possible to take multiple readings in a row, but it is recommended to take a new zero reading for each sample and to use the same cuvette for zeroing and measurement when possible.

Discard the sample immediately after the reading is taken, or the glass might become permanently stained.

All the reaction times reported in this manual are at 25 °C (77 °F). In general, the reaction time should be increased for temperatures lower than 20 °C (68 °F) and decreased for temperatures higher than 25 °C (77 °F).

Interferences

In the method measurement section the most common interferences that may be present in a typical water sample have been reported. It is possible that a particular application could introduce other compounds that will also interfere.

8.4. TIMERS & MEASUREMENT FUNCTIONS

Each method requires a different preparation procedure, reaction times and sample preparations. If a timer or timers are necessary for proper sample preparation, the **Timer** will be available.

To use a reaction timer, press **Timer**. The default timer will start immediately. To stop and reset the timer, press **Stop**.

If the selected method requires more than one timer, the meter will automatically select each timer in the appropriate order. To bypass the default order, you may press the desired key to activate a different timer (only while the current timer is stopped). Press **Continue** to start the active timer.

For some methods, the timer is only necessary after a Zero measurement has been performed. In this case, the timer key will only be available after the Zero measurement has been performed.

If the method requires a Zero or Read measurement after a timer has expired, the meter will automatically perform the appropriate action. Follow the instructions in the method procedure.

To perform a Zero or Read measurement, insert the prepared cuvette, then press Zero or Read. A Zero measurement must be conducted before a Read measurement.

8.5. CHEMICAL FORMULA & UNIT CONVERSION

Chemical formula and unit conversion factors are pre-programmed into the instrument and are method specific. In order to view the displayed result in the desired chemical formula press the \blacktriangle keys to access the second level function and then press **Chem Frm** to toggle between the available chemical formulas for the selected method.

8.6. METER VALIDATION & CAL CHECK

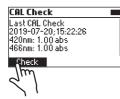
Warning: Do not validate the meter with standard solutions other than the Hanna Instruments[®] CAL Check Standards. For accurate validation results, please perform tests at room temperature, 18 to 25 °C (64.4 to 77.0 °F).

Validation of the HI83300 involves absorbance measurements of certified Hanna Instruments[®] CAL Check Standards (see ACCESSORIES section). The CAL Check screen guides the user through the measurement of each CAL Check Standard and applies the factory calibration corrections to each measurement. The HI83300 stores the results of the most recent CAL Check measurements which may be viewed on the CAL Check screen. Compare these results with the values printed on the Certificate provided with each Hanna Instruments[®] CAL Check Standards kit. To perform a validation:

SETUP

Done

11 08:21:17


- 1. Press the SETUP key.
- 2. Highlight CAL Check, then press Select.

Setup CAL Check

Backlight Contrast

Date / Time

3. Follow the prompts on the screen. The meter will prompt to measure each cuvette provided in the Hanna Instruments[®] CAL Check Standards kit. To exit the process at any time, press **ESC** kev.

Cf	1L Check	-
	Insert ZERO cuvette then press 'Continue'.	
Co	ontinue	

CAL Check	1
Insert the 420nm cuvette then press 'Continue'.	
Continue	

4. Press the ESC key to return in Setup menu.

8.7. ABSORBANCE MEASUREMENTS

Raw absorbance measurements may be performed on the HI83300 for personal or diagnostic purposes. For example, you may monitor the stability of a reagent blank by occasionally measuring its absorbance versus deionized water.

To measure the raw absorbance of a prepared sample:

1. Press the METHOD key.

- 2. Highlight the appropriate absorbance method (according to the wavelength to be used), then press **Select**. Absorbance methods are located at the bottom of the method list.
- 3. Prepare the sample cuvette according to the method.
- 4. Insert a cuvette filled with deionized water, then press Zero.
- 5. Insert the prepared sample cuvette, then press Read.

Warning: Never use absorbance methods for validation using Hanna Instruments[®] CAL Check cuvettes. The factory calibration corrections for CAL Check cuvettes are applied while in CAL Check mode only!

9. PROBE MODE

9.1. pH MEASUREMENT

The HI83300 can be used to perform direct pH measurements by connecting a Hanna Instruments[®] digital pH electrode with a 3.5 mm TRRS connector. Connect the electrode to the 3.5 mm port marked with EXT PROBE located at the rear of the meter. If the meter is in Photometer mode, set the meter to Probe mode by pressing the **MODE** key.

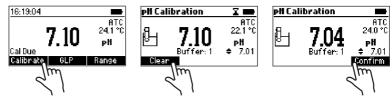
Press Calibrate to open the calibration window.

Press GLP to review the calibration information.

Press Range to switch between pH and mV.

For high accuracy it is recommended to calibrate your electrode often. pH electrodes should be recalibrated at least once per week, but daily calibration is recommended. Always recalibrate after cleaning an electrode, see pH CALIBRATION section for more information.

To take pH measurements:


- Remove the protective cap and rinse the electrode with water.
- Collect some sample in a clean, dry beaker.
- Preferably, rinse the electrode with a small amount of sample.
- Submerse the electrode tip approximately 3 cm (11/4") into the sample to be tested and stir the sample gently. Make sure the electrode junction is completely submersed.
- Allow time for the electrode to stabilize in the sample. When the Ξ symbol disappears, your reading is stable.

If measurements are taken successively in different samples, it is recommended to rinse the electrodes thoroughly with deionized or distilled water and then with some of the next sample to prevent cross-contamination.

pH measurements are affected by temperature. Hanna Instruments[®] digital pH electrodes include a built-in temperature sensor and automatically calculate corrected pH values. The measured temperature is displayed on the screen with the pH measurements.

9.2. pH CALIBRATION

From the probe measurement screen, press **Calibrate** to begin the calibration process. During pH calibration, the display will show the current pH reading, temperature reading, selected buffer type and the buffer number ("Buffer: 1" for the first buffer, "Buffer: 2" for the second buffer).

Press **Clear** to clear the current calibration.

Press **Confirm** to accept the current calibration point (only available if the reading is stable and within the limits for the selected buffer).

Press the **A** keys to cycle through the list of available buffers: pH 4.01, 6.86, 7.01, 9.18, 10.01. Press the **ESC** key to exit calibration and return to pH measurement mode.

Preparation

Pour small quantities of the buffer solutions into clean beakers. If possible, use plastic beakers to minimize any EMC interferences. For accurate calibrations and to minimize cross-contamination, use two beakers for each buffer solution: one for rinsing the electrode and one for calibration. If you are measuring in the acidic range, use pH 7.01 or 6.86 as the first buffer and pH 4.01 as the second buffer. If you are measuring in the alkaline range, use pH 7.01 or 6.86 as the first buffer and pH 10.01 or 9.18 as the second buffer.

Procedure

Calibration can be performed using one or two calibration buffers. For more accurate measurements, a two-point calibration is recommended.

Submerse the pH electrode approximately 3 cm (11/4") into a buffer solution and stir gently.

When the reading is stable and close to the selected buffer, press **Confirm** to accept and store the calibration point. The meter will prompt for the second buffer (Buffer: 2). To use only a one-point calibration, press the **ESC** key to exit calibration mode. The meter will store the calibration information to the probe and return to measurement mode. To continue calibrating with a second buffer, rinse and submerse the pH electrode approximately 3 cm $(1\frac{1}{4})$ into the second buffer solution and stir gently. If necessary, use the \mathbf{A} keys to select a different buffer value.

When the reading is stable and close to the selected buffer, press **Confirm** to accept and store the second calibration point.

The meter will store the two-point calibration information to the probe and return to Measurement mode. The list of calibrated buffers will appear at the bottom of the screen.

9.3. pH MESSAGES & WARNINGS

No Probe

No probe is connected or the probe is broken.

Connecting

The meter has detected a probe and is reading the probe configuration and calibration information.

Incompatible Probe

The connected probe is not compatible with this device.

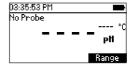
Incompatible Calibration

The probe's current calibration is not compatible with this meter. The calibration must be cleared to use this probe.

Exceeded Probe Range

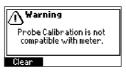
The pH and/or temperature measurement exceed the specifications of the probe. The measurement value(s) will be blinking.

Broken Temperature Sensor

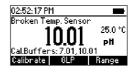

The temperature sensor inside the probe is broken. Temperature compensation will revert to a fixed value of 25 °C (77 °C).

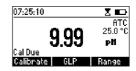
Cal Due

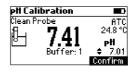
The probe has no calibration. See pH CALIBRATION section for details.


Clean Probe

The offset is outside the accepted window or the slope is under the accepted lower limit. Cleaning the probe will improve the pH electrode's response, repeat the calibration after cleaning. See pH ELECTRODE CONDITIONING & MAINTENANCE section for details.







Check Probe & Buffer

There is a large difference between the pH measurement and the selected buffer value or the electrode slope is outside of the accepted slope limit. Clean the probe and confirm the correct buffer selection.

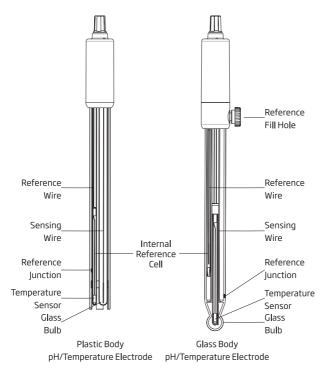
Wrong Temperature

The buffer temperature is outside of the acceptable window for the selected buffer value.

pH Calibration	
Wrong Temperature	ATC
18. 701	112.3 °C
(UL 10	рH
Buffer: 1	\$ 7.01
Clear	Confirm

9.4. pH GLP

Good Laboratory Practice (GLP) refers to a quality control function used to ensure uniformity and consistency of sensor calibrations and measurements. To view the GLP information, press the **GLP** key from the probe measurement screen.



The pH GLP screen displays the date and time, buffers, slope and offset for the last calibration. If the probe has not been calibrated, "No User Calibration" is displayed. Press the **ESC** key to return to the measurement mode.

Last pH Cal	
Feb 14,2019 07:27:16 Cal.Buffers: 4.01 , 7.01 Offset: 0.7mV Slope: 100.1%	

st pH	Cal		
User	Calibr	ation	

9.5. pH ELECTRODE CONDITIONING & MAINTENANCE

Remove the protective cap. Do not be alarmed if salt deposits are present, this is normal. Rinse the probe with water.

Shake the electrode down as you would do with a clinical thermometer to eliminate any air bubbles inside the glass bulb. If the bulb and / or junction are dry, soak the electrode in HI70300 or HI80300 Storage solution for a minimum of 30 minutes. Rinse with water. Calibrate before using.

For refillable electrodes if the filling solution (electrolyte) is more than $2\frac{1}{2}$ cm (1'') below the fill hole, add HI7082 or HI8082 3.5M KCI Electrolyte solution. Unscrew the fill hole cover during measurements so the liquid reference junction maintains an outward flow of electrolyte.

Storage Procedure

To minimize clogging and ensure a quick response time, the glass bulb and the junction should be kept moist and not allowed to dry out.

Replace the solution in the protective cap with a few drops of H170300 or H180300 Storage solution or Filling solution (H17082 or H18082 3.5M KCl Electrolyte solution). pH 4.01 or 7.01 buffer can also be used.

Note: Never store the electrode in distilled or deionized water.

PROBE MODE

Periodic Maintenance

Inspect the electrode and the cable. The cable used for connection to the instrument must be intact and there must be no points of broken insulation on the cable, connectors must be perfectly clean and dry. If there are any scratches or cracks on the electrode stem or bulb, replace the electrode.

For refillable electrodes, refill the reference chamber with fresh electrolyte (H17082 or H18082 3.5M KCl Electrolyte solution). Allow the electrode to stand upright for 1 hour.

Cleaning Procedure

Several cleaning solutions are available:

- General Soak in Hanna H17061 or H18061 General cleaning solution for approximately 30 minutes.
- Protein Soak in Hanna H17073 or H18073 Protein cleaning solution for 15 minutes.
- Inorganic Soak in Hanna HI7074 Inorganic cleaning solution for 15 minutes.
- Oil and grease Rinse with Hanna H17077 or H18077 Oil and Fat cleaning solution.

After performing any of the cleaning procedures, rinse the electrode thoroughly with distilled water, refill the reference chamber with fresh electrolyte (refillable electrodes only) and soak the electrode in H170300 or H180300 Storage solution for at least 1 hour before taking measurements.

Temperature Correlation for pH Sensitive Glass

Verify the temperature range by reading the limits on electrode's cap. The pH electrode's life is temperature dependent. If constantly cycled between two temperatures, the life of the electrode is drastically reduced.

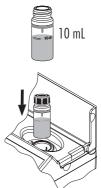
10. METHOD PROCEDURES

10.1. ALKALINITY

SPECIFICATIONS

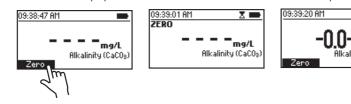
Range	0 to 500 mg/L (as $CaCO_3$)
Resolution	1 mg/L
Accuracy	\pm 5 mg/L \pm 5% of reading at 25 °C
Light Source	LED with narrow band interference filter $\textcircled{0}$ 610 nm
Method	Colorimetric Method

REQUIRED REAGENTS


Code	Description	Quantity
HI775S	Alkalinity Reagent	1 mL
HI93755-53	Chlorine Removal Reagent	1 drop

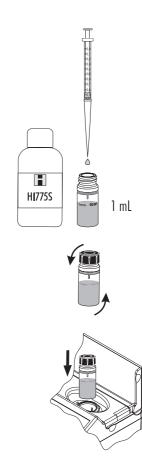
REAGENT SETS

H1775-26 Reagents for 25 tests For other accessories see ACCESSORIES section.


MEASUREMENT PROCEDURE

- Select the Alkalinity method using the procedure described in the METHOD SELECTION section.
- Fill the cuvette with 10 mL of unreacted sample (up to the mark). Replace the plastic stopper and the cap.

(CaCO:


- Insert the cuvette into the holder and close the lid.
- Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.

• Remove the cuvette.


- Add 1mL of H1775S Alkalinity Reagent to the sample using a 1 mL syringe.
- Replace the plastic stopper and the cap. Invert 5 times.

• Insert the cuvette into the holder and close the lid.

• Press Read to start the reading. The instrument displays the results in mg/L calcium carbonate (CaCO₃).

INTERFERENCES

Interference may be caused by:

• Chlorine must be absent, to remove the interference add one drop of H193755-53 Chlorine Removal Reagent to the unreacted sample

10.2. ALKALINITY, MARINE

SPECIFICATIONS

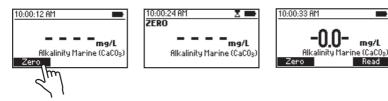
Range	0 to 300 mg/L (as $CaCO_3$)
Resolution	1 mg/L
Accuracy	\pm 5 mg/L \pm 5% of reading at 25 °C
Light Source	LED with narrow band interference filter $@$ 610 nm
Method	Colorimetric Method

REQUIRED REAGENTS

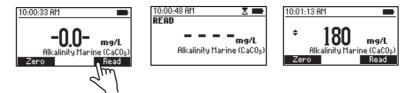
Code	Description	Quantity
HI755S	Alkalinity Reagent	1 mL

REAGENT SETS

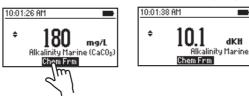
H1755-26 Reagents for 25 tests For other accessories see ACCESSORIES section.


MEASUREMENT PROCEDURE

- Select the Alkalinity Marine method using the procedure described in the METHOD SELECTION section.
- Fill the cuvette with 10 mL of unreacted sample (up to the mark). Replace the plastic stopper and the cap.
- Insert the cuvette into the holder and close the lid.



• Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.



• Remove the cuvette.

- Add 1 mL of H1755S Alkalinity Reagent to the sample using a 1mL syringe.
- Replace the plastic stopper and the cap. Invert 5 times.
- Insert the cuvette into the holder and close the lid.
- Press Read to start the reading. The instrument displays the results in mg/L as calcium carbonate (CaCO₃).

- Press the \blacktriangle or \blacktriangledown key to access the second level functions.
- Press Chem Frm to convert the result to degree KH (dKH).

• Press the \blacktriangle or \blacktriangledown key to return to the measurement screen.

10.3. ALUMINUM

SPECIFICATIONS

Range	0.00 to 1.00 mg/L (as Al ³⁺)
Resolution	0.01 mg/L
Accuracy	\pm 0.04 mg/L \pm 4% of reading at 25 °C
Light Source	LED with narrow band interference filter $@$ 525 nm
Method	Adaptation of the Aluminon Method

REQUIRED REAGENTS

Code	Description	Quantity
HI93712A-0	Aluminum Reagent A	1 packet
HI93712B-0	Aluminum Reagent B	1 packet
HI93712C-0	Aluminum Reagent C	1 packet

REAGENT SETS

HI93712-01	Reagents for 100 tests
HI93712-03	Reagents for 300 tests
For other accessorie	es see ACCESSORIES section.

- Select the Aluminum method using the procedure described in the METHOD SELECTION section.
- Fill a graduated beaker with 50 mL of sample.
- Add one packet of H193712A-0 Aluminum Reagent A and mix until completely dissolved.
- Add one packet of HI93712B-0 Aluminum Reagent B and mix until completely dissolved.

- Fill two cuvettes with 10 mL of sample (up to the mark).
- Add one packet of H193712C-O Aluminum Reagent C to one cuvette (#1). Replace the plastic stopper and the cap. Shake gently until completely dissolved. This is the blank.

• Insert the first cuvette (#1) into the holder and close the lid.

mg/L

mg/L minum (Al^a Bead

Aluminum (Al3+)

16:42:12

10:02:38 AM

• Press **Timer** and the display will show the countdown prior to the zero or wait 15 minutes and then press **Zero**. The display will show "-0.0-" when the meter is zeroed and ready for measurement.

Reaction time

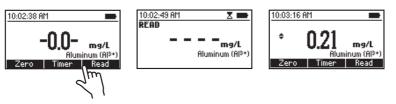

15min

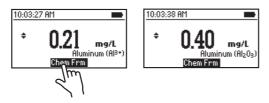
- Remove the blank and insert the second cuvette (#2) into the holder and close the lid.

: 59

ō

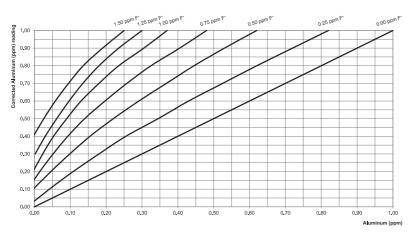
2) into the # 2





Aluminum (Al3+

- ALUMINUM
- Press Read to start the reading. The instrument displays the results in mg/L of aluminum (Al³⁺).


- Press the \blacktriangle or \blacktriangledown key to access the second level functions.
- Press Chem Frm to convert the result to mg/L of aluminum oxide (Al₂O₃).

- Press the \blacktriangle or \blacktriangledown key to return to the measurement screen.

INTERFERENCES

- Alkalinity above 1000 mg/L
- Phosphate above 50 mg/L
- Iron above 20 mg/L
- Fluoride must be absent. If the fluoride concentration is known, the aluminum concentration can be determined using the graph below:

ALUMINUM

To use the fluoride interference graph:

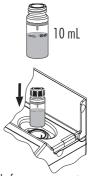
- 1. Follow the measurement procedure to obtain the aluminum concentration.
- 2. Locate the aluminum reading on x-axis.
- 3. Follow the line up, until it intersects the fluoride curve corresponding to the fluoride concentration in the sample.
- 4. From the intersection of the fluoride and aluminum line, follow the line to the left until it intersects the y-axis. This point corresponds to the corrected aluminum concentration in the sample.

E.g. Aluminum reading on meter 0.40 ppm and fluoride content in sample 0.50 ppm, corrected aluminum concentration in sample is 0.75 ppm.

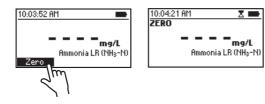
10.4. AMMONIA LOW RANGE

SPECIFICATIONS

Range	0.00 to 3.00 mg/L (as NH_3-N)
Resolution	0.01 mg/L
Accuracy	\pm 0.04 mg/L \pm 4% of reading at 25 °C
Light Source	LED with narrow band interference filter @ 420 nm
Method	Adaptation of the ASTM Manual of Water and Environmental Technology,
	D1426 Nessler Method


REQUIRED REAGENTS

Code	Description	Quantity
HI93700A-0	Ammonia Low Range Reagent A	4 drops
HI93700B-0	Ammonia Low Range Reagent B	4 drops


REAGENT SETS

HI93700-01	Reagents for 100 tests
HI93700-03	Reagents for 300 tests
For other accessor	ies see ACCESSORIES section.

- Select the Ammonia LR method using the procedure described in the METHOD SELECTION section.
- Fill the cuvette with 10 mL of unreacted sample (up to the mark). Replace the plastic stopper and the cap.

- Insert the cuvette into the holder and close the lid.
- Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.

• Remove the cuvette.

10:04:30 AM

Zero

10:05:16 AM

 Add 4 drops of H193700A-0 Ammonia Low Range Reagent A. Replace the plastic stopper and the cap. Swirl to mix the solution.

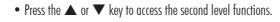
- Add 4 drops of HI93700B-0 Ammonia Low Range Reagent B. Replace the plastic stopper and the cap. Swirl to mix the solution.
- Insert the cuvette into the holder and close the lid.

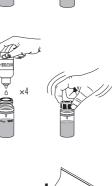
mg/L

LR (NHs-N)

Rear

mg/L R (NHS-N)


 Press Timer and the display will show the countdown prior to the measurement or wait 3 minutes and 30 seconds and press Read. When the timer ends the meter will perform the reading. The instrument displays the results in mg/L of ammonia nitrogen (NH₃-N).


29

Reaction time

3 :

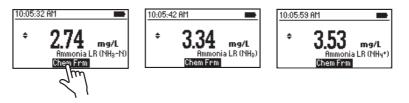
3.5min


 \mathbb{P}°

10:04:44 AM

READ

9


×4

mg/L

Ammonia LR (NHa-N)

- **AMMONIA LOW RANGE**
- Press Chem Frm to convert the result to mg/L of ammonia (NH₃) and ammonium (NH₄⁺).

- Press the \blacktriangle or \blacktriangledown key to return to the measurement screen.

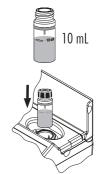
INTERFERENCES

- Hardness above 1 g/L
- Iron
- Sulfide may cause turbidity
- Organic compounds like acetone above 0.1%, alcohols, aldehydes, aliphatic and aromatic amines, chloramines, glycine, or urea above 10 mg/L, to remove the interference distillation is required

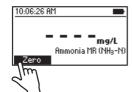
10.5. AMMONIA MEDIUM RANGE

SPECIFICATIONS

Range	0.00 to 10.00 mg/L (as NH ₃ -N)
Resolution	0.01 mg/L
Accuracy	\pm 0.05 mg/L \pm 5% of reading at 25 °C
Light Source	LED with narrow band interference filter @ 420 nm
Method	Adaptation of the ASTM Manual of Water and Environmental Technology,
	D1426, Nessler Method


REQUIRED REAGENTS

Code	Description	Quantity
HI93715A-0	Ammonia Medium Range Reagent A	4 drops
HI93715B-0	Ammonia Medium Range Reagent B	4 drops


REAGENT SETS

HI93715-01	Reagents for 100 tests
HI93715-03	Reagents for 300 tests
For other accessories s	see ACCESSORIES section.

- Select the Ammonia MR method using the procedure described in the METHOD SELECTION section.
- Fill the cuvette with 10 mL of unreacted sample (up to the mark). Replace the plastic stopper and the cap.

- Insert the cuvette into the holder and close the lid.
- Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.

10:06:42 AM	X 🖛
ZERO	
_	
_	mg/L
	Ammonia MR (NH ₃ -N)

mg/L

Ammonia MR (NH₃-N)

• Insert the cuvette into the holder and close the lid.

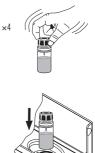
• Add 4 drops of H193715A-0 Ammonia Medium Range Reagent A. Replace the plastic stopper and the cap. Swirl to mix the solution.

• Add 4 drops of HI93715B-0 Ammonia Medium Ranae Reagent B.

Replace the plastic stopper and the cap. Swirl to mix the solution.

• Remove the cuvette.

10:07:05 AM


Zero

10:07:41 AM ÷

• Press Timer and the display will show the countdown prior to the measurement or wait 3 minutes and 30 seconds and press Read. When the timer ends the meter will perform the reading. The instrument displays the results in mg/L of ammonia nitrogen (NH₃-N).

ma/l

0 ×4

8

• Press Chem Frm to convert the result to mg/L of ammonia (NH₃) and ammonium (NH₄⁺).

- Press the \blacktriangle or \blacktriangledown key to return to the measurement screen.

INTERFERENCES

- Hardness above 1 g/L
- Iron
- Sulfide may cause turbidity
- Organic compounds like acetone above 0.1%, alcohols, aldehydes, aliphatic and aromatic amines, chloramines, glycine, or urea above 10 mg/L, to remove the interference distillation is required

AMMONIA HIGH RANGE

10.6. AMMONIA HIGH RANGE

SPECIFICATIONS

Range	0.0 to 100.0 mg/L (as NH ₃ -N)
Resolution	0.1 mg/L
Accuracy	\pm 0.5 mg/L \pm 5% of reading at 25 °C
Light Source	LED with narrow band interference filter @ 420 nm
Method	Adaptation of the ASTM Manual of Water and Environmental Technology,
	D1426, Nessler Method

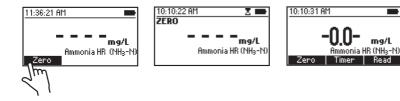
REQUIRED REAGENTS

Code	Description	Quantity
HI93733A-0	Ammonia High Range Reagent A	4 drops
HI93733B-0	Ammonia High Range Reagent B	9 mL

REAGENT SETS

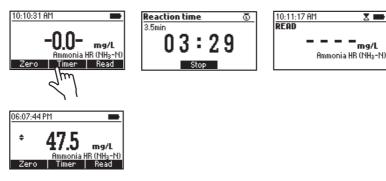
HI93733-01	Reagents for 100 tests
HI93733-03	Reagents for 300 tests
For other accessor	ies see ACCESSORIES section.

MEASUREMENT PROCEDURE


- Select the Ammonia HR method using the procedure described in the METHOD SELECTION section.
- Add 1 mL of unreacted sample to the cuvette using a 1 mL syringe.
- Use the pipette to fill the cuvette up to the 10 mL mark with H193733B-0 Ammonia High Range Reagent B. Replace the plastic stopper and the cap. Swirl to mix the solution.

۵

• Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.


- Remove the cuvette.
- Add 4 drops of H193733A-O Ammonia High Range Reagent A. Replace the plastic stopper and the cap. Swirl to mix the solution.

• Insert the cuvette into the holder and close the lid.

 Press Timer and the display will show the countdown prior to the measurement or wait 3 minutes and 30 seconds and press Read. When the timer ends the meter will perform the reading. The instrument displays the results in mg/L of ammonia nitrogen (NH₃-N).

• Press the \blacktriangle or \blacktriangledown key to access the second level functions.

• Press Chem Frm to convert the result to mg/L of ammonia (NH₃) and ammonium (NH₄⁺).

• Press the \blacktriangle or \blacktriangledown key to return to the measurement screen.

INTERFERENCES

- Hardness above 1 g/L
- Iron
- Sulfide may cause turbidity
- Organic compounds like acetone above 0.1%, alcohols, aldehydes, aliphatic and aromatic amines, chloramines, glycine, or urea above 10 mg/L, to remove the interference distillation is required

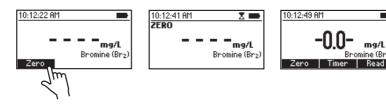
10.7. BROMINE

SPECIFICATIONS

Range	0.00 to 8.00 mg/L (as Br ₂)
Resolution	0.01 mg/L
Accuracy	\pm 0.08 mg/L \pm 3% of reading at 25 °C
Light Source	LED with narrow band interference filter $@$ 525 nm
Method	Adaptation of Standard Methods for the Examination of Water and
	Wastewater, 18 th Edition, DPD Method


REQUIRED REAGENTS

Code	Description	Quantity
HI93716-0	Bromine Reagent	1 packet


REAGENT SETS

HI93716-01	Reagents for 100 tests
HI93716-03	Reagents for 300 tests
For other accessorie	es see ACCESSORIES section.

- Select the Bromine method using the procedure described in the METHOD SELECTION section.
- Fill the cuvette with 10 mL of unreacted sample (up to the mark). Replace the plastic stopper and the cap.

- Insert the cuvette into the holder and close the lid.
- Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.

- Remove the cuvette.
- Add one packet of HI93716-0 Bromine Reagent. Replace the plastic stopper and the cap. Shake gently for about 20 seconds to dissolve most of the reagent.
- Insert the cuvette into the holder and close the lid.
- Press Timer and the display will show the countdown prior to the measurement or wait 2 minutes and 30 seconds and press Read. When the timer ends the meter will perform the reading. The instrument displays the results in mg/L of bromine (Br₂).

INTERFERENCES

- Chlorine, Iodine, Ozone, Oxidized forms of Chromium and Manganese
- Hardness greater than 500 mg/L CaCO₃, to remove the interference shake the sample for approximately 1 minute after adding the reagent
- Alkalinity greater than 300 mg/L CaCO₃ or acidity greater than 150 mg/L CaCO₃, the color of the sample may develop only partially or rapidly fade, to remove the interference neutralize the sample with diluted HCl or NaOH

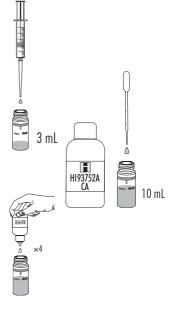
10.8. CALCIUM

SPECIFICATIONS

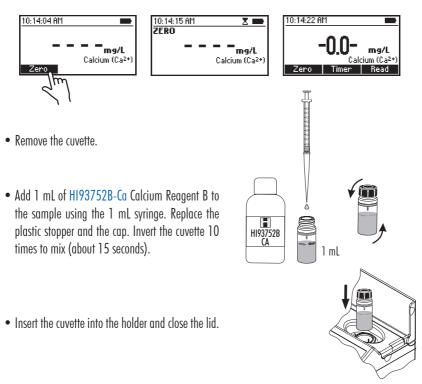
Range	0 to 400 mg/L (as Ca ²⁺)
Resolution	1 mg/L
Accuracy	\pm 10 mg/L \pm 5% of reading at 25 °C
Light Source	LED with narrow band interference filter @ 466 nm
Method	Adaptation of the Oxalate Method

REQUIRED REAGENTS

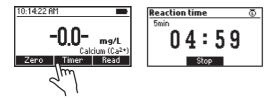
Code	Description	Quantity
-	Buffer Reagent	4 drops
H193752A-Ca	Calcium Reagent A	7 mL
H193752B-Ca	Calcium Reagent B	1 mL

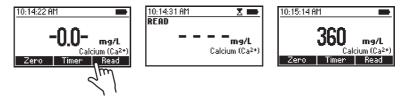

REAGENT SETS

HI937521-01	Reagents for 50 tests	
HI937521-03	Reagents for 150 tests	
For other accessories see ACCESSORIES section.		

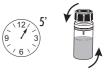

MEASUREMENT PROCEDURE

• Add 4 drops of Buffer Reagent.


- Select the Calcium method using the procedure described in the METHOD SELECTION section.
- Add 3 mL of unreacted sample to the cuvette using the 5 mL syringe.
- Use the pipette to fill the cuvette up to the 10 mL mark with the H193752A-Ca Calcium Reagent A.


- Replace the plastic stopper and the cap. Invert several times to mix.
- Insert the cuvette into the holder and close the lid.
- Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.

• Press Timer and the display will show the countdown prior to the measurement or wait 5 minutes.



- After waiting 5 minutes, invert the cuvette 10 times to mix (about 15 seconds).
- Insert the cuvette into the holder and close the lid.
- Press Read to start the reading. The instrument displays the results in mg/L of calcium (Ca²⁺).

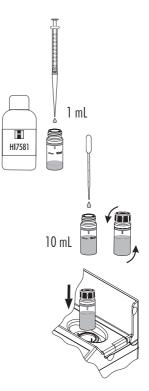
INTERFERENCES

- Acidity, Alkalinity above 1000 mg/ L CaCO₃
- Magnesium above 400 mg/L

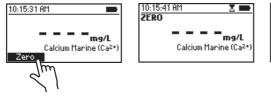
10.9. CALCIUM, MARINE

SPECIFICATIONS

Range	200 to 600 mg/L (as Ca ²⁺)
Resolution	1 mg/L
Accuracy	\pm 6% of reading at 25 °C
Light Source	LED with narrow band interference filter $\textcircled{0}$ 610 nm
Method	Adaptation of the Zincon Method


REQUIRED REAGENTS

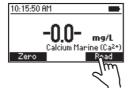
Code	Description	Quantity
HI7581	Calcium Reagent A	1 mL
HI7582	Calcium Reagent B	1 packet


REAGENT SETS

HI758-26	Reagents for 25 tests
For other accessories	see ACCESSORIES section.

- Select the Calcium Marine method using the procedure described in the METHOD SELECTION section.
- Add 1 mL of H17581 Calcium Reagent A to the cuvette using a 1 mL syringe.
- Use the plastic pipette to fill the cuvette to the 10 mL mark with deionized water. Replace the plastic stopper and the cap. Invert 3 to 5 times to mix.
- Insert the cuvette into the holder and close the lid.

• Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.


- Remove the cuvette.
- Use the minipipette to add 0.1 mL of sample to the cuvette.

 Add one packet of H17582 Calcium Reagent B. Replace the plastic stopper and the cap and shake vigorously for 15 seconds or until the powder is completely dissolved. Allow air bubbles to dissipate for 15 seconds before taking a reading.

• Insert the cuvette into the holder and close the lid.

• Press Read to start the reading. The instrument displays the results in mg/L of calcium (Ca²⁺).

10:16:12 AM		X 🗰
READ		
_		mg/L
C	alcium M	mg/L arine (Ca ²⁺)

10.10. CHLORIDE

SPECIFICATIONS

Range	0.0 to 20.0 mg/L (as Cl⁻)
Resolution	0.1 mg/L
Accuracy	\pm 0.5 mg/L \pm 6% of reading at 25 °C
Light Source	LED with narrow band interference filter @ 466 nm
Method	Adaptation of the Mercury(II) Thiocyanate Method

REQUIRED REAGENTS

Code	Description	Quantity
HI93753A-0	Chloride Reagent A	1 mL
H193753B-0	Chloride Reagent B	1 mL

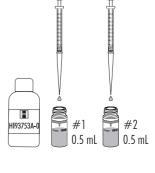
REAGENT SETS

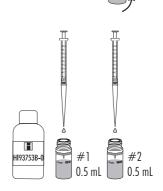
HI93753-01	Reagents for 100 tests
HI93753-03	Reagents for 300 tests
For other accessories	see ACCESSORIES section.

MEASUREMENT PROCEDURE

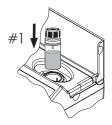
- Select the Chloride method using the procedure described in the METHOD SELECTION section.
- Fill one cuvette (#1) with 10 mL of deionized water (up to the mark).
- Fill a second cuvette (#2) with 10 mL of sample (up to the mark).

Note: For samples with low chloride ion concentration, rinse the cuvette a few times with sample before filling it with 10 mL of sample. For the most accurate results, use two graduated pipettes to deliver exactly 10 mL of deionized water and 10 mL of sample to the cuvettes.

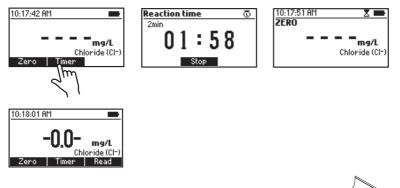



58

- Add 0.5 mL of H193753A-0 Chloride Reagent A to each cuvette using the 1 mL syringe.
- Replace the plastic stoppers and the caps. Mix each cuvette by inverting for approximately 30 seconds.


• Add 0.5 mL of H193753B-0 Chloride Reagent B to each cuvette using the second 1 mL syringe.

- Replace the plastic stoppers and the caps. Mix each cuvette by inverting for approximately 30 seconds.
- Insert the cuvette with the reacted deionized water (#1) into the holder and close the lid.



59

• Press **Timer** and the display will show the countdown prior to the zero or wait 2 minutes and press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.

Remove the cuvette.

10:18:01 AM

10:18:30 AM

• Insert the other cuvette (#2) with the reacted sample into the holder and close the lid.

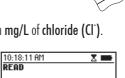
> mg/L Chloride (Cl-)

Read

mg/L hloride (Cl-) Read

Timer

• Press Read to start reading. The instrument displays the results in mg/L of chloride (CI⁻).


2min

INTERFERENCES

Interference may be caused by:

- Intensely colored samples, samples should be adequately treated before performing the test
- Suspended matter in large amount should be removed by prior filtration
- Alkaline samples, neutralize before adding reagents, the pH of the sample after addition of reagents should be about 2

mg/L

Chloride (CI-)

#1

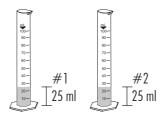
10.11. CHLORINE DIOXIDE

SPECIFICATIONS

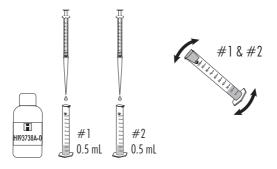
Range	0.00 to 2.00 mg/L (as CIO_2)
Resolution	0.01 mg/L
Accuracy	\pm 0.10 mg/L \pm 5% of reading at 25 °C
Light Source	LED with narrow band interference filter @ 575 nm
Method	Adaptation of the Chlorophenol Red Method

REQUIRED REAGENT

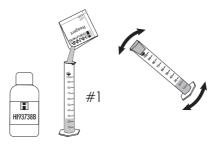
Code	Description	Quantity
HI93738A-0	Chlorine Dioxide Reagent A	1 mL
HI93738B-0	Chlorine Dioxide Reagent B	1 packet
HI93738C-0	Chlorine Dioxide Reagent C	1 mL
HI93738D-0	Chlorine Dioxide Reagent D	1 mL


REAGENT SETS

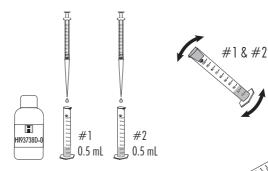
HI93738-01	Reagents for 100 tests
HI93738-03	Reagents for 300 tests
For other accessories	see ACCESSORIES section.

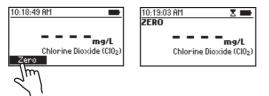

SAMPLING PROCEDURE

It is recommended to analyze Chlorine Dioxide samples immediately after collection. Chlorine Dioxide samples must be stored in sealed dark glass bottles, with minimal head space. Excessive heat (above 25 °C / 77 °F), agitation and exposure to light must be avoided.


- Select the Chlorine Dioxide method using the procedure described in the METHOD SELECTION section.
- Fill two graduated mixing cylinders (#1 & #2) up to the 25 mL mark with the sample.

• Add 0.5 mL of H193738A-0 Chlorine Dioxide Reagent A to each cylinder (#1 & #2), using a 1 mL syringe, cap them and invert several times to mix.


• Add one packet of H193738B-O Chlorine Dioxide Reagent B to one of the two cylinders (#1), cap and invert it several times until it is totally dissolved. This is the blank.

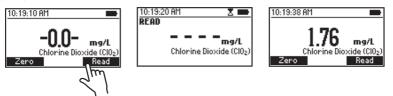

• Add 0.5 mL of H193738C-0 Chlorine Dioxide Reagent C to each cylinder (#1 & #2), using a 1 mL syringe, cap them and invert several times to mix.

• Add 0.5 mL of H193738D-0 Chlorine Dioxide Reagent to each cylinder (#1 & #2), using a 1 mL syringe, cap them and invert several times to mix. Cylinder #2 is the reacted sample.

- Fill cuvette (#1) with 10 mL of the blank (up to the mark). Replace the plastic stopper and the cap.
- Insert the blank (#1) into the holder and close the lid.
- Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.

10:19:10 AM -O.O- mg/L Chlorine Dioxide (Cl0₂) Zero #2 10 mL #2 10 mL #2

#1


#1

10 mL

• Fill second cuvette (#2) with 10 mL of the reacted sample (up to the mark). Replace the plastic stopper and the cap.

• Insert the sample into the holder and close the lid.

• Press Read to start the reading. The instrument displays the results in mg/L of chlorine dioxide (CIO₂).

INTERFERENCES

Interference may be caused by:

• Strong oxidants

10.12. CHLORINE DIOXIDE, RAPID METHOD

SPECIFICATIONS

Range	0.00 to 2.00 mg/L (as ClO ₂)
Resolution	0.01 mg/L
Accuracy	\pm 0.10 mg/L \pm 5% of reading at 25 °C
Light Source	LED with narrow band interference filter $@$ 525 nm
Method	Adaptation of Standard Methods for the Examination of Water and Wastewater,
	18^{th} Edition, 4500 ClO ₂ D

REQUIRED REAGENT

Code	Description	Quantity
HI96779A-0	Chlorine Dioxide Reagent A	5 drops
HI96779B-0	Chlorine Dioxide Reagent B	1 packet

REAGENT SETS

HI96779-01	Reagents for 100 tests
HI96779-03	Reagents for 300 tests
For other accessories	see ACCESSORIES section.

PRINCIPLE

The reaction between the Chlorine Dioxide and DPD indicator causes a pink tint in the sample, the addition of alycine as a masking agent inhibits the response of free chlorine.

APPLICATION

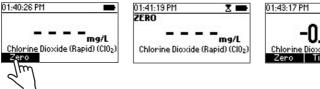
Drinking water, tap water, treated water

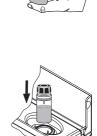
SAMPLING PROCEDURE

Collect the sample in a clean glass bottle and analyze it immediately. Chlorine dioxide is a strong oxidizing agent and is unstable in water.

SIGNIFICANCE & USE

Chlorine Dioxide is a commonly-used alternative to chlorine (Cl₂) as a water disinfectant. The Chlorophenol Red method (non-rapid method) reacts specifically with chlorine dioxide with little interference from free chlorine or chloramines, but the method procedure is cumbersome. The Chlorine Dioxide Rapid Method based on the DPD (N,N-diethyl-p-phenylenediamine) indicator is a much simpler method by comparison, but it is susceptible to interference from other oxidizers. Glycine (Reagent A) is able to convert free chlorine to chloroaminoacetic acid without affecting the analysis of chlorine dioxide content.

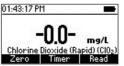

65

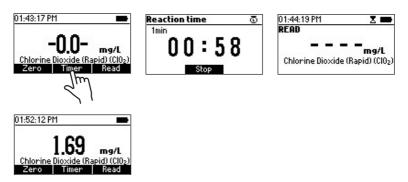

MEASUREMENT PROCEDURE

- Select the Chlorine Dioxide (Rapid) method using the procedure described in the METHOD SELECTION section.
- Fill the cuvette with 10 mL of unreacted sample (up to the mark).

• Add 5 drops of HI96779A-0 Chlorine Dioxide Reagent A.

- Replace the plastic stopper and the cap. Shake gently for 30 seconds.
- Wait for 30 seconds.
- Insert the cuvette into the holder and close the lid.
- Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.





×5



- Remove the cuvette.
- Add one packet of HI96779B-0 Chlorine Dioxide Reagent B.
- Replace the plastic stopper and the cap. Shake gently for 20 seconds.
- Insert the cuvette into the holder and close the lid.
- Press Timer and the display will show the countdown prior to the measurement or wait 1 minute and press Read. When the timer ends the meter will perform the reading. The instrument displays the results in mg/L of CIO₂.

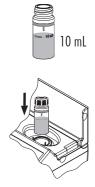
INTERFERENCES

- Acidity, Alkalinity, Flocculating agents, Hardness, Inorganic and Organic Chloramines, Manganese, Metals, Monochloramine, Oxidized forms of Chromium and Manganese, Ozone and Peroxides
- Chlorine above 5 mg/L
- Bromine above 0.1 mg/L
- Highly buffered samples or extreme sample pH

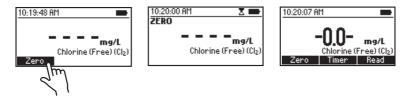
10.13. CHLORINE, FREE

SPECIFICATIONS

Range	0.00 to 5.00 mg/L (as Cl_2)
Resolution	0.01 mg/L
Accuracy	\pm 0.03 mg/L \pm 3% of reading at 25 °C
Light Source	LED with narrow band interference filter $@$ 525 nm
Method	Adaptation of the EPA DPD Method 330.5

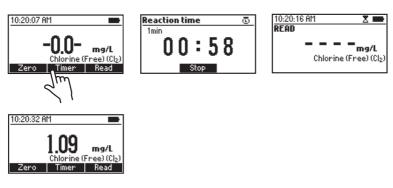

REQUIRED REAGENTS

TOWDER		
Code	Description	Quantity
HI93701-0	Free Chlorine Reagent	1 packet
LIQUID		
Code	Description	Quantity
Code HI93701A-F	Description Free Chlorine Reagent A	Quantity 3 drops
	•	,


REAGENT SETS

HI93701-F	Reagents for 300 tests (liquid)	
HI93701-01	Reagents for 100 tests (powder)	
HI93701-03	Reagents for 300 tests (powder)	
For other accessories see ACCESSORIES section.		

- Select the Chlorine (Free) method using the procedure described in the METHOD SELECTION section.
- Fill the cuvette with 10 mL of unreacted sample (up to the mark). Replace the plastic stopper and the cap.
- Insert the cuvette into the holder and close the lid.

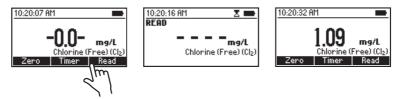

• Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.

• Remove the cuvette.

POWDER REAGENT PROCEDURE

- Add the content of one packet of HI93701-0 Free Chlorine Reagent. Replace the plastic stopper and the cap. Shake gently for 20 seconds.
- Insert the cuvette into the holder and close the lid.
- Press Timer and the display will show the countdown prior to the measurement or wait 1 minute and press Read. When the timer ends the meter will perform the reading. The instrument displays the results in mg/L of chlorine (Cl₂).

LIQUID REAGENT PROCEDURE


• To an empty cuvette add 3 drops of HI93701A-F Free Chlorine Reagent A and 3 drops of HI93701B-F Free Chlorine Reagent B.

×3

10 ml

×3

- Replace the plastic stopper and the cap. Swirl gently to mix.
- Add 10 mL of unreacted sample (up to the mark). Replace the plastic stopper and the cap. Shake gently.
- Insert the cuvette into the holder and close the lid.
- Press Read to start the reading. The instrument displays the results in mg/L of chlorine (Cl₂).

Note: Free and Total Chlorine have to be measured separately with fresh sample following the related procedure if both values are desired.

INTERFERENCES

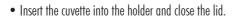
- Bromine, Iodine, Oxidized forms of Chromium and Manganese, Ozone
- Hardness greater than 500 mg/L CaCO₃, to remove the interference shake the sample for approximately 2 minutes after adding the powder reagent
- Alkalinity greater than 250 mg/L CaCO₃ or acidity value greater than 150 mg/L CaCO₃, the color of the sample may develop only partially or rapidly fade, to remove the interference neutralize the sample with diluted HCl or NaOH

10.14. CHLORINE, FREE ULTRA LOW RANGE

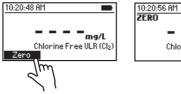
SPECIFICATIONS

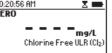
Range	0.000 to 0.500 mg/L (as Cl_2)
Resolution	0.001 mg/L
Accuracy	\pm 0.020 mg/L \pm 3% of reading at 25 °C
Light Source	LED with narrow band interference filter $@$ 525 nm
Method	Adaptation of the Standard Method 4500-Cl G

REQUIRED REAGENTS


Code	Description	Quantity
HI95762-0	Free Chlorine Ultra Low Range Reagent	1 packet

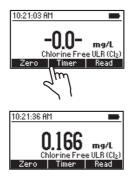
REAGENTS SETS

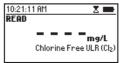

HI95762-01	Reagents for 100 tests	
HI95762-03	Reagents for 300 tests	
For other accessories see ACCESSORIES section.		


MEASUREMENT PROCEDURE

- Select the Chlorine Free ULR method using the procedure described in the METHOD SELECTION section.
- Fill the cuvette with 10 mL of unreacted sample (up to the mark). Replace the plastic stopper and the cap.

• Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.




- Remove the cuvette.
- Add one packet of H195762-0 Free Chlorine ULR Reagent. Replace the plastic stopper and the cap. Shake gently for 20 seconds.
- Insert the cuvette into the holder and close the lid.

• Press **Timer** and the display will show the countdown prior to the measurement or wait 1 minute and press **Read**. When the timer ends the meter will perform the reading. The instrument displays the results in **mg/L** of **chlorine (Cl₂)**.

INTERFERENCES

- Bromine, Chlorine Dioxide, Iodine, Oxidized forms of Chromium and Manganese, Ozone
- Alkalinity greater than 1000 mg/L CaCO₃ if present as bicarbonate (pH < 8.3), above 25 mg/L CaCO₃ if present as carbonate (pH > 9.0) or acidity value greater than 150 mg/L CaCO₃, the color of the sample may develop only partially or rapidly fade, to remove the interference neutralize the sample with diluted HCl or NaOH
- Hardness greater than 500 mg/L CaCO₃, to remove the interference shake the sample for approximately 2 minutes after adding the powder reagent

10.15. CHLORINE, TOTAL

SPECIFICATIONS

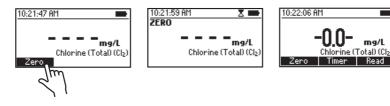
Range	0.00 to 5.00 mg/L (as Cl ₂)
Resolution	0.01 mg/L
Accuracy	\pm 0.03 mg/L \pm 3% of reading at 25 °C
Light Source	LED with narrow band interference filter @ 525 nm
Method	Adaptation of the EPA DPD Method 330.5

REQUIRED REAGENTS

POWDFR

TOWDER		
Code	Description	Quantity
HI93711-0	Total Chlorine Reagent	1 packet
LIQUID		
Code	Description	Quantity
HI93701A-T	Total Chlorine Reagent A	3 drops
HI93701B-T	Total Chlorine Reagent B	3 drops
HI93701C-T	Total Chlorine Reagent C	1 drop

REAGENT SETS

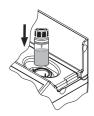

HI93701-T	Reagents for 300 tests (liquid)
HI93711-01	Reagents for 100 total tests (powder)
HI93711-03	Reagents for 300 total tests (powder)
For other accessories see ACCESSORIES section.	

- Select the Chlorine (Total) method using the procedure described in the METHOD SELECTION section.
- Fill the cuvette with 10 mL of unreacted sample (up to the mark). Replace the plastic stopper and the cap.
- Insert the cuvette into the holder and close the lid.

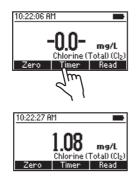
• Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.

Remove the cuvette.

POWDER REAGENT PROCEDURE


• Add 1 packet of HI93711-0 Total Chlorine Reagent. Replace the plastic stopper and the cap. Shake gently for 20 seconds.

• Insert the cuvette into the holder and close the lid



mg/L

Read

• Press Timer and the display will show the countdown prior to the measurement or wait 2 minutes and 30 seconds and press Read. When the timer ends the meter will perform the reading. The instrument displays the results in mg/L of chlorine (Cl₂).

10:22:14 AM	2 🖬
READ	
	mg/L
Chlorine	(Total) (Cl ₂)

CHLORINE, TOTAL

LIQUID REAGENT PROCEDURE

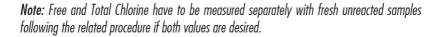
- To an empty cuvette add 3 drops of HI93701A-T Total Chlorine Reagent A, 3 drops of HI93701B-T Total Chlorine Reagent B and 1 drop of HI93701C-T Total Chlorine Reagent C.
- Replace the plastic stopper and the cap. Swirl gently to mix.
- Add 10 mL of unreacted sample (up to the mark). Replace the plastic stopper and the cap. Shake gently.
- Insert the cuvette into the holder and close the lid.

mg/L

mg/L (Total) (Cl₂ Read

(Total) (Cl

10:22:06 AM


10:22:27 AM

Zero

 Press Timer and the display will show the countdown prior to the measurement or wait 2 minutes and 30 seconds and press Read. When the timer ends the meter will perform the reading. The instrument displays the results in mg/L of chlorine (Cl₂).

Reaction time

2.5min

10:22:14 AM

mg/L

Chlorine (Total) (Cl₂)

READ

ð

28

INTERFERENCES

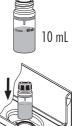
- Bromine, Iodine, Oxidized forms of Chromium and Manganese, Ozone
- Hardness greater than 500 mg/L CaCO₃, to remove the interference shake the sample for approximately 2 minutes after adding the powder reagent
- Alkalinity greater than 250 mg/L CaCO₃ or acidity greater than 150 mg/L CaCO₃, the color of the sample may develop only partially or may rapidly fade, to remove the interference neutralize the sample with diluted HCl or NaOH

10.16. CHLORINE, TOTAL ULTRA LOW RANGE

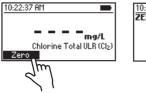
SPECIFICATIONS

Range	0.000 to 0.500 mg/L (as Cl ₂)
Resolution	0.001 mg/L
Accuracy	\pm 0.020 mg/L \pm 3% of reading at 25 °C
Light Source	LED with narrow band interference filter $\textcircled{0}$ 525 nm
Method	Adaptation of the EPA Method 330.5

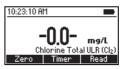
REQUIRED REAGENTS


Code	Description	Quantity
HI95761-0	Total Chlorine Ultra Low Range Reagent	1 packet

REAGENT SETS


HI95761-01	Reagents for 100 tests
HI95761-03	Reagents for 300 tests
For other accessorie	es see ACCESSORIES section.

MEASUREMENT PROCEDURE


- Select the Chlorine (Total) ULR method using the procedure described in the METHOD SELECTION section.
- Fill the cuvette with 10 mL of unreacted sample (up to the mark). Replace the plastic stopper and the cap.
- Insert the cuvette into the holder and close the lid.


• Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.

- Remove the cuvette.
- Add one packet of HI95761-0 Total Chlorine ULR Reagent. Replace the plastic stopper and the cap. Shake gently for 20 seconds.
- Insert the cuvette into the holder and close the lid.

• Press **Timer** and the display will show the countdown prior to the measurement or wait 2 minutes and 30 seconds and press **Read**. When the timer ends the meter will perform the reading. The instrument displays the results in **mg/L** of **chlorine** (Cl₂).

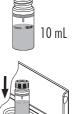
INTERFERENCES

- Bromine, Chlorine Dioxide, Iodine, Oxidized forms of Chromium and Manganese, Ozone
- Alkalinity greater than 1000 mg/L CaCO₃ if present as bicarbonate (pH < 8.3), above 25 mg/L CaCO₃ if present as carbonate (pH > 9.0) or acidity value greater than 150 mg/L CaCO₃, the color of the sample may develop only partially or rapidly fade, to remove the interference neutralize the sample with diluted HCl or NaOH
- Hardness greater than 500 mg/L CaCO₃, to remove the interference shake the sample for approximately 2 minutes after adding the powder reagent

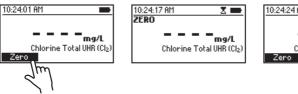
10.17. CHLORINE, TOTAL ULTRA HIGH RANGE

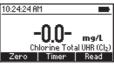
SPECIFICATIONS

Range	0 to 500 mg/L (as Cl_2)
Resolution	1 mg/L
Accuracy	\pm 3 mg/L \pm 3% of reading at 25 °C
Light Source	LED lamp with narrow band interference filter @ 525 nm
Method	Adaptation of Standard Methods for Examination of Water and
	Wastewater, 20 th Edition, 4500-Cl

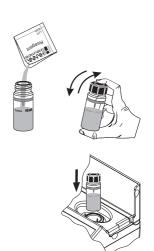

REQUIRED REAGENTS

Code	Description	Quantity
HI95771A-0	Total Chlorine Ultra High Range Reagent A	1 packet
HI95771B-0	Total Chlorine Ultra High Range Reagent B	1 packet


REAGENTS SETS


HI95771-01	Reagents for 100 tests
HI95771-03	Reagents for 300 tests
For other accessorie	s see ACCESSORIES section.

- Select the Chlorine (Total) UHR method using the procedure described in the METHOD SELECTION section.
- Fill the cuvette with 10 mL of unreacted sample (up to the mark). Replace the plastic stopper and the cap.



- Insert the cuvette into the holder and close the lid.
- Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.

- Remove the cuvette.
- Add one packet of HI95771A-O Total Chlorine Ultra High Range Reagent A and one packet HI95771B-O Total Chlorine Ultra High Range Reagent B. Replace the plastic stopper and the cap. Shake gently for 20 seconds.
- Insert the cuvette into the holder and close the lid.

• Press **Timer** and the display will show the countdown prior to the measurement or wait 1 minute and press **Read**. When the timer ends the meter will perform the reading. The instrument displays the results in **mg/L** of **chlorine (Cl₂)**.

) mg/L Fotal UHB (CI-

10:24:34 Al	1 🛛 🗶 🗰
READ	
Ch	mg/L lorine Total UHR (Cl ₂)

INTERFERENCES

Interference may be caused by:

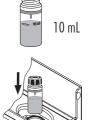
• Bromine, Chlorine Dioxide, Chromium, Iodine, Oxidized Manganese, Ozone

10.18. CHROMIUM(VI) LOW RANGE

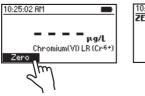
SPECIFICATIONS

Range	0 to 300 µg/L (as Cr (VI))
Resolution	1 µg/L
Accuracy	\pm 10 μ g/L \pm 4% of reading at 25 °C
Light Source	LED with narrow band interference filter @ 525 nm
Method	Adaptation of the ASTM Manual of Water and Environmental Technology,
	D1687 Diphenylcarbohydrazide Method

REQUIRED REAGENTS

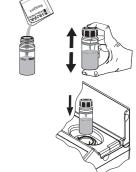

Code	Description	Quantity
HI93749-0	Chromium(VI) Low Range Reagent	1 packet

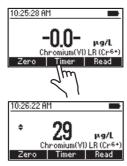
REAGENT SETS


HI93749-01	Reagents for 100 tests
HI93749-03	Reagents for 300 tests
For other accessor	ies see ACCESSORIES section

MEASUREMENT PROCEDURE

- Select the Chromium(VI) LR method using the procedure described in the METHOD SELECTION section.
- Fill the cuvette with 10 mL of unreacted sample (up to the mark). Replace the plastic stopper and the cap.
- Insert the cuvette into the holder and close the lid.

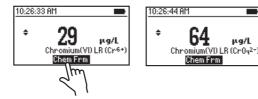

• Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.



- Remove the cuvette.
- Add one packet of H193749-0 Chromium(VI) Low Range Reagent. Replace the plastic stopper and the cap. Shake vigorously for about 10 seconds.
- Insert the cuvette into the holder and close the lid.

 Press Timer and the display will show the countdown prior to the measurement or wait 6 minutes and press Read. When the timer ends the meter will perform the reading. The instrument displays concentration in µg/L of chromium (Cr⁶⁺).

10:26:53 AM


րց/Լ

Chromium(VI) LR (Cr2072

Chem Frm

۵

- Press the \blacktriangle or $\mathbf{\nabla}$ key to access the second level functions.
- Press Chem Frm to convert the result to μ g/L of chromate (Cr04²⁻) and dichromate (Cr207²⁻).

• Press the \blacktriangle or \blacktriangledown key to return to the measurement screen.

INTERFERENCES

- Vanadium above 1 mg/L, wait 10 minutes before reading to remove the interference
- Iron above 1 mg/L
- Mercurous and mercuric ions slight inhibition of the reaction

10.19. CHROMIUM(VI) HIGH RANGE

SPECIFICATIONS

Range	0 to 1000 µg/L (as Cr(VI))
Resolution	1 µg/L
Accuracy	\pm 5 μ g/L \pm 4% of reading at 25 °C
Light Source	LED with narrow band interference filter $@$ 525 nm
Method	Adaptation of the ASTM Manual of Water and Environmental Technology,
	D1687-92, Diphenylcarbohydrazide Method

REQUIRED REAGENTS

Code	Description	Quantity
HI93723-0	Chromium(VI) High Range Reagent	1 packet

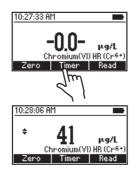
REAGENT SETS

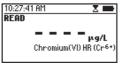
HI93723-01	Reagents for 100 tests
HI93723-03	Reagents for 300 tests
For other accessories	see ACCESSORIES section

MEASUREMENT PROCEDURE

- Select the Chromium(VI) HR method using the procedure described in the METHOD SELECTION section.
- Fill the cuvette with 10 mL of unreacted sample (up to the mark). Replace the plastic stopper and the cap.

• Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.




- Remove the cuvette.
- Add one packet of H193723-0 Chromium(VI) High Range Reagent. Replace the plastic stopper and the cap. Shake vigorously for about 10 seconds.
- Insert the cuvette into the holder and close the lid.

 Press Timer and the display will show the countdown prior to the measurement or wait 6 minutes and press Read. When the timer ends the meter will perform the reading. The instrument displays concentration in µg/L of chromium (Cr⁶⁺).



- Press the \blacktriangle or \blacktriangledown key to access the second level functions.
- Press Chem Frm to convert the result to $\mu g/L$ of chromate (Cr0₄^{2⁻}) and dichromate (Cr₂0₇^{2⁻}).

10:28:25 RM Ф 91 м9/L Chromium(VI) HR (Cr0y2-) Chem Fpm

• Press the \blacktriangle or \blacktriangledown key to return to the measurement screen.

INTERFERENCES

- Vanadium above 1 mg/L, wait 10 minutes before reading to remove the interference
- Iron above 1 mg/L
- Mercurous and mercuric ions slight inhibition of the reaction

10.20. COLOR OF WATER

SPECIFICATIONS

Range	0 to 500 PCU (Platinum Cobalt Units)
Resolution	1 PCU
Accuracy	\pm 10 PCU \pm 5% of reading at 25 °C
Light Source	LED with narrow band interference filter @ 420 nm
Method	Adaptation of Standard Methods for the Examination of Water and
	Wastewater, 18 th Edition, Colorimetric Platinum Cobalt Method

REQUIRED ACCESSORIES

0.45 μm membrane for true color measurement For other accessories see ACCESSORIES section.

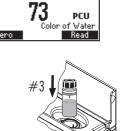
MEASUREMENT PROCEDURE

- Select the Color of Water method using the procedure described in the METHOD SELECTION section.
- Fill the first cuvette (#1) with 10 mL of deionized water (up to the mark). Replace the plastic stopper and the cap. This is the blank.
- Insert the blank (#1) into the holder and close the lid.

• Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.

- Remove the cuvette
- Fill the second cuvette (#2) with 10 mL of unfiltered sample (up to the mark). Replace the plastic stopper and the cap. This is the apparent color.

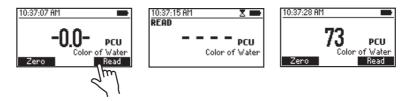
• Filter 10 mL of sample through a filter with a 0.45 μ m membrane into the third cuvette (#3), up to the 10 mL mark. Replace the plastic stopper and the cap. This is the true color.


- Insert the apparent color cuvette (#2) into the holder and close the lid.
- Press Read to start the reading. The meter displays the value of apparent color in Platinum Cobalt Units (PCU).

PCU

Color of Water

• Remove the apparent color cuvette (#2) from the holder, insert the true color cuvette (#3) into the holder and close the lid.


⊒ufle U∭F

#2

10:37:28 AM

#3

 Press Read to start the reading. The meter displays the true color in Platinum Cobalt Units (PCU).

10.21. COPPER LOW RANGE

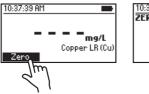
SPECIFICATIONS

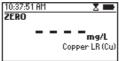
Range	0.000 to 1.500 mg/L (as Cu ²⁺)
Resolution	0.001 mg/L
Accuracy	\pm 0.010 mg/L \pm 5% of reading at 25 °C
Light Source	LED with narrow band interference filter $@$ 575 nm
Method	Adaptation of the EPA Method

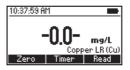
REQUIRED REAGENTS

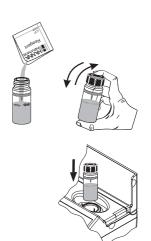
Code	Description	Quantity
H195747-0	Copper Low Range Reagent	1 packet

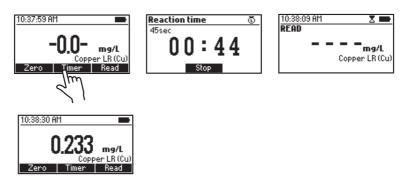
REAGENT SETS


HI95747-01	Reagents for 100 tests
HI95747-03	Reagents for 300 tests
For other accessorie	es see ACCESSORIES section.


- Select the Copper LR method using the procedure described in the METHOD SELECTION section.
- Fill the cuvette with 10 mL of unreacted sample (up to the mark). Replace the plastic stopper and the cap.




- Insert the cuvette into the holder and close the lid.
- Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.



- Remove the cuvette.
- Add one packet of H195747-0 Copper Low Range Reagent. Replace the plastic stopper and the cap. Shake gently for about 15 seconds.
- Insert the cuvette into the holder and close the lid.

• Press Timer and the display will show the countdown prior to the measurement or wait 45 seconds and press Read. When the timer ends the meter will perform the reading. The instrument displays the results in mg/L of copper (Cu).

INTERFERENCES

- Cyanide, Silver
- For samples overcoming buffering capacity of reagent around pH 6.8, pH should be adjusted between 6 and 8

COPPER HIGH RANGE

10.22. COPPER HIGH RANGE

SPECIFICATIONS

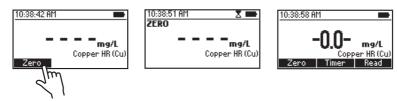
Range	0.00 to 5.00 mg/L (as Cu^{2+})
Resolution	0.01 mg/L
Accuracy	\pm 0.02 mg/L \pm 4% of reading at 25 °C
Light Source	LED with narrow band interference filter @ 575 nm
Method	Adaptation of the EPA Method

REQUIRED REAGENTS

Code	Description	Quantity
HI93702-0	Copper High Range Reagent	1 packet

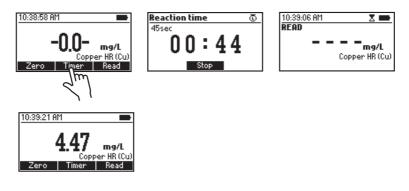
REAGENT SETS

HI93702-01	Reagents for 100 tests
HI93702-03	Reagents for 300 tests
For other accessorie	es see ACCESSORIES section.


MEASUREMENT PROCEDURE

- Select the Copper HR method using the procedure described in the METHOD SELECTION section.
- Fill the cuvette with 10 mL of unreacted sample (up to the mark). Replace the plastic stopper and the cap.
- Insert the cuvette into the holder and close the lid.

• Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.



- Remove the cuvette.
- Add one packet of HI93702-0 Copper High Range Reagent. Replace the plastic stopper and the cap. Shake gently for about 15 seconds.
- Insert the cuvette into the holder and close the lid.

• Press **Timer** and the display will show the countdown prior to the measurement or wait 45 seconds and press **Read**. When the timer ends the meter will perform the reading. The instrument displays the results in **mg/L** of **copper (Cu)**.

INTERFERENCES

- Cyanide, Silver
- For samples overcoming buffering capacity of reagent around pH 6.8, pH should be adjusted between 6 and 8

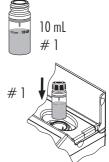
CYANURIC ACID

10.23. CYANURIC ACID

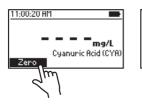
SPECIFICATIONS

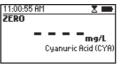
Range	0 to 80 mg/L (as CYA)
Resolution	1 mg/L
Accuracy	\pm 1 mg/L \pm 15% of reading at 25 °C
Light Source	LED with narrow band interference filter $@$ 525 nm
Method	Adaptation of the Turbidimetric Method

REQUIRED REAGENTS


Code	Description	Quantity
HI93722-0	Cyanuric Acid Reagent	1 packet
PEACENT SETS		

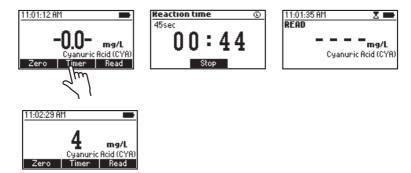
REAGENT SETS


HI93722-01	Reagents for 100 tests
HI93722-03	Reagents for 300 tests
For other accessorie	es see ACCESSORIES section.


MEASUREMENT PROCEDURE

- Select the Cyanuric Acid method using the procedure described in the METHOD SELECTION section.
- Fill the first cuvette with 10 mL of unreacted sample (up to the mark). Replace the plastic stopper and the cap.
- Insert the cuvette into the holder and close the lid.

• Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.



- Fill a beaker with 25 mL sample.
- Add one packet of H193722-0 Cyanuric Acid Reagent and mix to dissolve.
- Fill a second cuvette with 10 mL of the reacted sample (up to the mark). Replace the plastic stopper and the cap.
- Insert the cuvette into the holder and close the lid.

• Press **Timer** and the display will show the countdown prior to the measurement or wait 45 seconds and press **Read**. When the timer ends the meter will perform the reading. The instrument displays the concentration in **mg/L** of **cyanuric acid**.

1

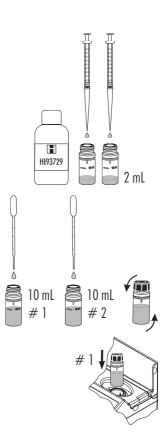
10 mL

FLUORIDE LOW RANGE

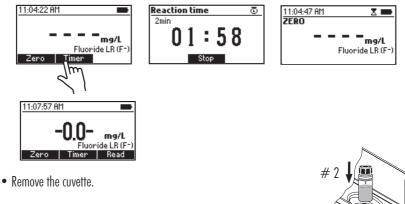
10.24. FLUORIDE LOW RANGE

SPECIFICATIONS

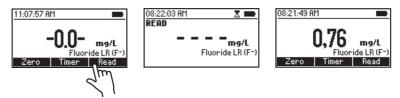
Range	0.00 to 2.00 mg/L (as F⁻)
Resolution	0.01 mg/L
Accuracy	\pm 0.03 mg/L \pm 3% of reading at 25 °C
Light Source	LED with narrow band interference filter $@$ 575 nm
Method	Adaptation of Standard Methods for the Examination of Water and
	Wastewater, 18 th Edition, SPADNS Method


REQUIRED REAGENT

Code	Description	Quantity
HI93729-0	Fluoride Low Range Reagent	4 mL


REAGENT SETS

HI93729-01	Reagents for 100 tests
HI93729-03	Reagents for 300 tests
For other accessori	es see ACCESSORIES section


- Select the Fluoride LR method using the procedure described in the METHOD SELECTION section.
- Add 2 mL of H193729-0 Fluoride Low Range Reagent to two cuvettes.
- Use a plastic pipette to fill one cuvette with 10 mL of deionized water (up to the mark) (#1). Replace the plastic stopper and the cap. Invert several times to mix.
- Use a plastic pipette to fill the second cuvette with 10 mL of unreacted sample (up to the mark) (#2). Replace the plastic stopper and the cap. Invert several times to mix.
- Insert the first cuvette (#1) into the holder and close the lid.

 Press Timer and the display will show the countdown prior to zeroing the blank or wait 2 minutes and press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.

- Insert the second cuvette (#2) with the reacted sample into the holder and close the lid.
- Press Read to start reading. The instrument displays the results in mg/L of fluoride (F⁻).

Note: For wastewater or seawater samples, before performing measurements, distillation is required. For most accurate results use two graduated pipettes to deliver exactly 8 mL of deionized water and 8 mL of sample.

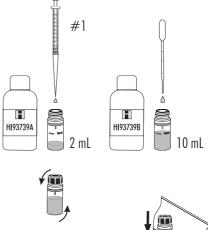
INTERFERENCES

- Alkalinity above 5000 mg/L CaCO₃
- Chloride above 700 mg/L
- Sulfate above 200 mg/L
- Orthophosphate above 16 mg/L
- Iron (Ferric) above 10 mg/L
- Sodium hexametaphosphate above 1.0 mg/L
- Aluminum above 0.1 mg/L
- Highly colored and turbid samples may require distillation
- Highly alkaline samples can be neutralized with nitric acid

10.25. FLUORIDE HIGH RANGE

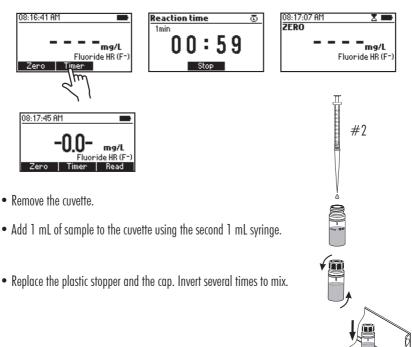
SPECIFICATIONS

Range	0.0 to 20.0 mg/L (as F⁻)
Resolution	0.1 mg/L
Accuracy	\pm 0.5 mg/L \pm 3% of reading at 25 °C
Light Source	LED with narrow band interference filter @ 575 nm
Method	Adaptation of Standard Methods for the Examination of Water and
	Wastewater, 18 th Edition, SPADNS Method

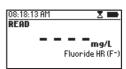

REQUIRED REAGENT

Code	Description	Quantity
HI93739A-0	Fluoride High Range Reagent A	2 mL
HI93739B-0	Fluoride High Range Reagent B	8 mL

REAGENT SETS


HI93739-01	Reagents for 100 tests
HI93739-03	Reagents for 300 tests
For other accessori	es see ACCESSORIES section

- Select the Fluoride HR method using the procedure described in the METHOD SELECTION section.
- Use 1 mL syringe one and add 2 mL of H193739A-0 Fluoride High Range Reagent A to the cuvette. Use the pipette to fill up the cuvette to the 10 mL mark with H193739B-0 Fluoride High Range Reagent B.
- Replace the plastic stopper and the cap. Invert several times to mix.
- Insert the cuvette into the holder and close the lid.


• Press **Timer** and the display will show the countdown prior to zeroing the blank or wait 1 minute and press **Zero**. The display will show "-0.0-" when the meter is zeroed and ready for measurement.

- Insert the cuvette into the holder and close the lid.
- Press Timer and the display will show the countdown prior to the measurement or wait 1 minute and press Read. When the timer ends the meter will perform the reading. The instrument displays the results in mg/L of fluoride (F^{*}).

Note: For wastewater or seawater samples, before performing measurements, distillation is required.

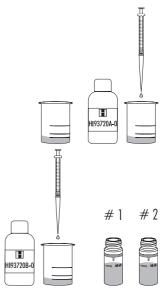
INTERFERENCES

- Alkalinity above 5000 mg/L CaCO₃
- Chloride above 700 mg/L
- Sulfate above 200 mg/L
- Orthophosphate above 16 mg/L
- Aluminum above 0.1 mg/L
- Iron (Ferric) above 10 mg/L
- Sodium hexametaphosphate above 1.0 mg/L
- Highly colored and turbid samples may require distillation
- Highly alkaline samples can be neutralized with nitric acid

10.26. HARDNESS, CALCIUM

SPECIFICATIONS

Range	0.00 to 2.70 mg/L (as $CaCO_3$)
Resolution	0.01 mg/L
Accuracy	\pm 0.11 mg/L \pm 5% of reading at 25 °C
Light Source	LED with narrow band interference filter @ 525 nm
Method	Adaptation of Standard Methods for the Examination of Water and
	Wastewater, 18^{th} Edition, Calmagite Method


REQUIRED REAGENTS

Code	Description	Quantity
HI93720A-0	Calcium Hardness Reagent A	0.5 mL
HI93720B-0	Calcium Hardness Reagent B	0.5 mL
HI93720C-0	Calcium Hardness Reagent C	1 drop

REAGENT SETS

HI93720-01	Reagents for 100 tests
HI93720-03	Reagents for 300 tests
For other accessories	see ACCESSORIES section.

- Select the Hardness (Calcium) method using the procedure described in the METHOD SELECTION section.
- Rinse a graduated beaker several times with unreacted sample, before filling it to the 50 mL mark with the sample.
- Add 0.5 mL of H193720A-0 Calcium Hardness Reagent A and swirl to mix the solution.
- Add 0.5 mL of HI93720B-0 Calcium Hardness Reagent B and swirl to mix the solution. Fill two cuvettes with 10 mL of sample (up to the mark).

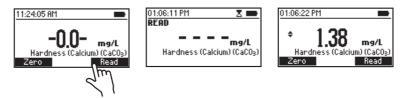
- Add 1 drop of H193720C-0 Calcium Hardness Reagent C to one cuvette (#1).
- Replace the plastic stopper and the cap. Invert the cuvette several times to mix. This is the blank.
- Insert the blank (#1) into the holder and close the lid.

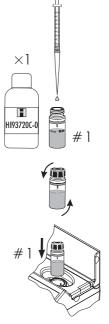
mg/L

11:21:37 AM

the holder.

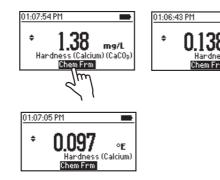
• Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.


mg/L


Hardness (Calcium) (CaCO₃)
 Hardness (Calcium) (CaCO₃)
 Hardness (Calcium) (CaCO₃)
 Hardness (Calcium) (CaCO₃)
 Remove the blank (#1) and insert the second cuvette (#2) into

11:22:00 AM

ZERO


• Press Read to start the reading. The instrument displays concentration in mg/L of calcium carbonate (CaCO₃).

- Press the \blacktriangle or \blacktriangledown key to access the second level functions.
- Press Chem Frm to convert the result to French degrees (°f), German degrees (°dH) and English degrees (°E).

• Press the \blacktriangle or \blacktriangledown key to return to the measurement screen.

Note: This test will detect any calcium contamination in the beaker, measuring syringes or sample cells. To test cleanliness repeat the test multiple times until you obtain consistent results.

SAMPLE DILUTION

This meter is designed to determine low levels of hardness, typically found in water purification systems. Dilutions must be performed with hardness-free water or the readings will be erroneous. To reduce the level of hardness by a factor of one hundred:

- Fill a 1 mL syringe with the sample.
- Add 0.5 mL of sample to a clean, dry 50 mL beaker
- Fill the beaker up to the 50 mL mark with hardness-free water.

INTERFERENCES

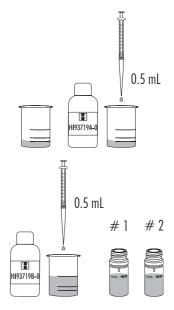
Interference may be caused by:

• Excessive amounts of heavy metals

10.27. HARDNESS, MAGNESIUM

SPECIFICATIONS

Range	0.00 to 2.00 mg/L (CaCO ₃)
Resolution	0.01 mg/L
Accuracy	\pm 0.11 mg/L \pm 5% of reading at 25 °C
Light Source	LED with narrow band interference filter @ 525 nm
Method	Adaptation of Standard Methods for the Examination of Water and
	Wastewater, 18 th Edition, EDTA Colorimetric Method

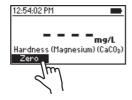

REQUIRED REAGENTS

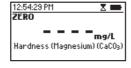
Code	Description	Quantity
HI93719A-0	Magnesium Hardness Reagent A	0.5 mL
HI93719B-0	Magnesium Hardness Reagent B	0.5 mL
HI93719C-0	Magnesium Hardness Reagent C	1 drop
HI93719D-0	Magnesium Hardness Reagent D	1 drop

REAGENT SETS

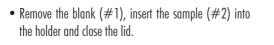
HI93719-01	Reagents for 100 tests
HI93719-03	Reagents for 300 tests
For other accessories	s see ACCESSORIES section.

- Select the Hardness (Magnesium) method using the procedure described in the METHOD SELECTION section.
- Rinse a graduated beaker several times with unreacted sample before filling it to the 50 mL mark with the sample.
- Add 0.5 mL of H193719A-0 Magnesium Hardness Reagent A, then swirl to mix the solution.
- Add 0.5 mL of HI93719B-0 Magnesium Hardness Reagent B and swirl to mix the solution. Use this solution to rinse 2 cuvettes.
- Fill two cuvettes with 10 mL of sample (up to the mark).

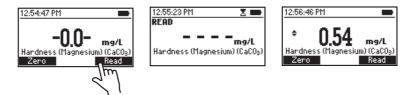



 Add 1 drop of HI93719C-0 Magnesium Hardness Reagent C to one cuvette (#1), replace the plastic stopper and the cap. Invert the cuvette several times to mix the solution. This is the blank.

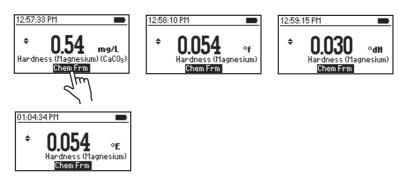
- Add 1 drop of H193719D-0 Magnesium Hardness Reagent D to the second cuvette (#2), replace the plastic stopper and the cap. Invert the cuvette several times to mix the solution. This is the sample.
- Insert the blank (#1) into the holder and close the lid.



• Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.



12:54:47 PM -0.0- mg/L Hardness (Magnesium) (CaCO₂) Zero Read



• Press Read to start the reading. The instrument displays concentration in mg/L of calcium carbonate. (CaCO₃).

- Press the \blacktriangle or \blacktriangledown key to access the second level functions.
- Press Chem Frm to convert the result to French degrees (°f), German degrees (°dH) and English degrees (°E).

• Press the \blacktriangle or \blacktriangledown key to return to the measurement screen.

Note: This test will detect any magnesium contamination in the beakers, measuring syringes, or sample cells. To test cleanliness repeat the test multiple times until you obtain consistent results.

SAMPLE DILUTION

This meter is designed to determine low levels of hardness, typically found in water purification systems. Dilutions must be performed with hardness-free water or the readings will be erroneous. To reduce the level of hardness by a factor of one hundred:

- Fill a 1 mL syringe with the sample.
- Add 0.5 mL of sample to a clean, dry 50 mL beaker
- Fill the beaker up to the 50 mL mark with hardness-free water.

INTERFERENCES

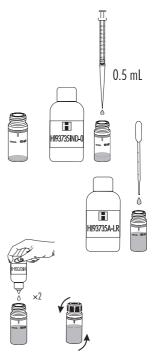
Interference may be caused by:

• Excessive amounts of heavy metals

10.28. HARDNESS, TOTAL LOW RANGE

SPECIFICATIONS

Range	0 to 250 mg/L (as $CaCO_3$)
Resolution	1 mg/L
Accuracy	\pm 5 mg/L \pm 4% of reading at 25 °C
Light Source	LED with narrow band interference filter @ 466 nm
Method	Adaptation of the EPA Recommended Method 130.1


REQUIRED REAGENTS

Code	Description	Quantity
HI93735IND-0	Hardness Indicator Reagent	0.5 mL
H193735A-LR	Hardness Low Range Reagent A	9 mL
HI93735B-0	Hardness Buffer Reagent B	2 drops
HI93735C-0	Fixing Reagent	1 packet

REAGENT SETS

HI93735-00	Reagents for 100 tests (LR, 0 to 250 mg/L)	
HI93735-0	Reagents for 300 tests (LR - 100 tests, MR - 100 tests, HR - 100 tests)	
For other accessories see ACCESSORIES section.		

- Select the Hardness Total LR method using the procedure described in the METHOD SELECTION section.
- Add 0.5 mL of unreacted sample to the cuvette. Add 0.5 mL of H1937351ND-0 Hardness Indicator Reagent.
- Use a plastic pipette and fill the cuvette up to the 10 mL mark with H193735A-LR Hardness Low Range Reagent A.
- Add 2 drops of H193735B-0 Hardness Buffer Reagent B. Replace the plastic stopper and the cap. Invert 5 times to mix.

Insert the cuvette into the holder and close the lid.

mg/L

08:54:02 AM

08:55:14 AM

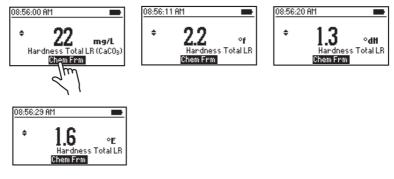
• Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.

2 -

mg/L Hardness Tol .R (CaCOs R (CaCO_R)

08:54:19 AM ZERO

- Remove the cuvette and add the contents of one packet of H193735C-O Fixing Reagent. Replace the plastic stopper and the cap. Shake gently for 20 seconds to mix the solution.
- Insert the cuvette into the holder and close the lid.
- Press Read to start the reading. The instrument displays concentration in mg/L of calcium carbonate (CaCO₃).
 - 08:55:39 AM READ 08:55:50 AM X ¢ mg/L mg/L mg/L R (CaCOs) LR (CaCOs) Hardness Total LR (CaCOs) Hardness Tol Hardne Zero
- Press the \blacktriangle or \checkmark key to access the second level functions.



08:55:14 AM

 Press Chem Frm to convert the result to French degrees (°f), English degrees (°E) and German degrees (°dH).

- Press the \blacktriangle or \blacktriangledown key to return to the measurement screen.

INTERFERENCES

Interference may be caused by:

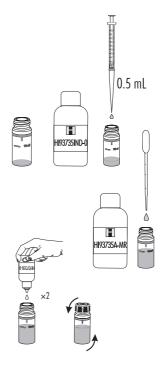
• Excessive amounts of heavy metals

10.29. HARDNESS, TOTAL MEDIUM RANGE

SPECIFICATIONS

Range	200 to 500 mg/L (as $CaCO_3$)
Resolution	1 mg/L
Accuracy	\pm 7 mg/L \pm 3% of reading at 25 °C
Light Source	LED with narrow band interference filter $@$ 466 nm
Method	Adaptation of the EPA Recommended Method 130.1

REQUIRED REAGENTS

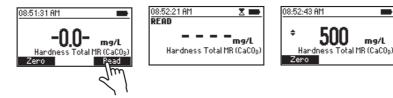

Code	Description	Quantity
H193735IND-0	Hardness Indicator Reagent	0.5 mL
H193735A-MR	Hardness Medium Reagent A	9 mL
HI93735B-0	Hardness Buffer Reagent B	2 drops
HI93735C-0	Fixing Reagent	1 packet

REAGENT SETS

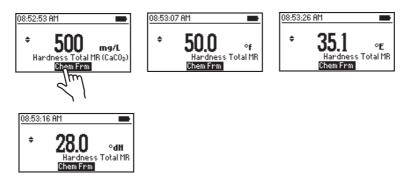
HI93735-01	Reagents for 100 tests (MR, 200 to 500 mg/L)	
HI93735-0	Reagents for 300 tests (LR - 100 tests, MR - 100 tests, HR - 100 tests)	

For other accessories see ACCESSORIES section.

- Select the Hardness Total MR method using the procedure described in the METHOD SELECTION section.
- Add 0.5 mL of unreacted sample to the cuvette. Add 0.5 mL of H1937351ND-0 Hardness Indicator Reagent.
- Use a plastic pipette and fill the cuvette up to the 10 mL mark with H193735A-MR Hardness Medium Range Reagent A.
- Add two drops of H193735B-0 Hardness Buffer Reagent B. Replace the plastic stopper and the cap. Invert 5 times to mix.


• Insert the cuvette into the holder and close the lid.

• Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.



- Remove the cuvette and add one packet of H193735C-0 Fixing Reagent. Replace the plastic stopper and the cap. Shake gently for 20 seconds to mix the solution.
- Insert the cuvette into the holder and close the lid.
- Press Read to start the reading. The instrument displays concentration in mg/L of calcium carbonate (CaCO₃).

• Press the \blacktriangle or \blacktriangledown key to access the second level functions.

• Press Chem Frm to convert the result to French degrees (°f), English degrees (°E) and German degrees (°dH).

• Press the \blacktriangle or \blacktriangledown key to return to the measurement screen.

INTERFERENCES

Interference may be caused by:

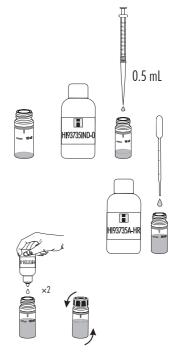
• Excessive amounts of heavy metals

10.30. HARDNESS, TOTAL HIGH RANGE

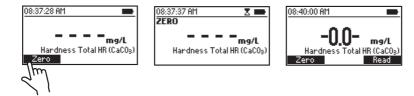
SPECIFICATIONS

Range	400 to 750 mg/L (as $CaCO_3$)
Resolution	1 mg/L
Accuracy	± 10 mg/L $\pm 2\%$ of reading at 25 °C
Light Source	LED with narrow band interference filter @ 466 nm
Method	Adaptation of the EPA Recommended Method 130.1

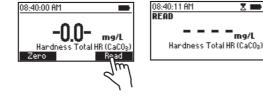
REQUIRED REAGENTS


Code	Description	Quantity
HI93735IND-0	Hardness Indicator Reagent	0.5 mL
HI93735A-HR	Hardness High Range Reagent A	9 mL
HI93735B-0	Hardness Buffer Reagent B	2 drops
HI93735C-0	Fixing Reagent	1 packet

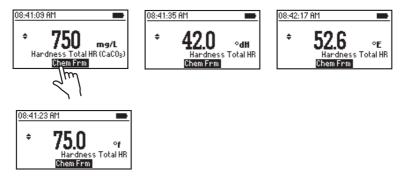
REAGENT SETS


HI93735-02	Reagents for 100 tests (HR, 400 to 750 mg/L)	
HI93735-0	Reagents for 300 tests (LR - 100 tests, MR - 100 tests, HR - 100 tests)	
For other accessories see ACCESSORIES section.		

MEASUREMENT PROCEDURE


- Select the Total Hardness HR method using the procedure described in the METHOD SELECTION section).
- Add 0.5 mL of unreacted sample to the cuvette. Add 0.5 mL of H1937351ND-0 Hardness Indicator Reagent.
- Use a plastic pipette and fill the cuvette up to the 10 mL mark with H193735A-HR Hardness High Range Reagent A.
- Add two drops of H193735B-0 Hardness Buffer Reagent B. Replace the plastic stopper and the cap. Invert 5 times to mix.

- Insert the cuvette into the holder and close the lid.
- Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.


- Remove the cuvette and add one packet of H193735C-0 Fixing Reagent. Replace the plastic stopper and the cap. Shake gently for 20 seconds to mix the solution.
- Insert the cuvette into the holder and close the lid.
- Press Read to start the reading. The instrument displays concentration in mg/L of calcium carbonate (CaCO₃).

• Press the \blacktriangle or \blacktriangledown key to access the second level functions.

• Press Chem Frm to convert the result to French degrees (°f), English degrees (°E) and German degrees (°dH).

• Press the \blacktriangle or \blacktriangledown key to return to the measurement screen.

INTERFERENCES

Interference may be caused by:

• Excessive amounts of heavy metals

10.31. HYDRAZINE

SPECIFICATIONS

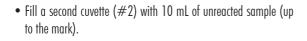
Range	0 to 400 μ g/L (as N ₂ H ₄)
Resolution	1 µg/L
Accuracy	\pm 4% of full scale reading at 25 °C
Light Source	LED with narrow band interference filter @ 466 nm
Method	Adaptation of the ASTM Manual of Water and Environmental Technology,
	Method D1385, p-Dimethylaminobenzaldehyde Method

REQUIRED REAGENT

Code	Description	Quantity
HI93704-0	Hydrazine Reagent	24 drops

REAGENT SETS

HI93704-01	Reagents for 100 tests
HI93704-03	Reagents for 300 tests
For other accessor	ies see ACCESSORIES section.

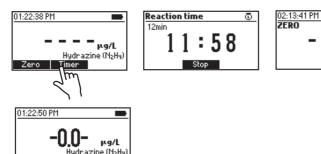

MEASUREMENT PROCEDURE

- Select the Hydrazine method using the procedure described in the METHOD SELECTION section.
- Fill one cuvette (#1) with 10 mL of deionized water (up to the mark).

10 mL

#2

 Add 12 drops of the H193704-0 Hydrazine Reagent to each cuvette. Replace the plastic stoppers and the caps. Shake gently to mix (about 30 seconds).


• Insert the cuvette (#1) into the holder and close the lid.

μg/L

Hydrazine (N₂H₃)

• Press Timer and the display will show the countdown prior to zeroing the blank or wait 12 minutes and press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.

• Insert the cuvette with the reacted sample (#2) into the holder and close the lid.

Remove the blank.

- Press Read to start the reading. The instrument displays concentration in $\mu g/L$ of hydrazine (N_2H_4).

:23:53 PM 🛛 🗶 💼	01:23:17 PM	•
EAD — — — μg/L Hydrazine (Ν ₂ Hy)	57 149/L Hydrazine (Hall Zero Timer Read	ų)

INTERFERENCES

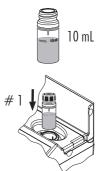
- Highly colored samples
- Highly turbid samples
- Aromatic amines

10.32. IODINE

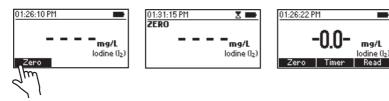
SPECIFICATIONS

Range	0.0 to 12.5 mg/L (as I_2)
Resolution	0.1 mg/L
Accuracy	\pm 0.1 mg/L \pm 5% of reading at 25 °C
Light Source	LED with narrow band interference filter $@$ 525 nm
Method	Adaptation of Standard Methods for the Examination of Water and
	Wastewater, 18 th Edition, DPD Method

REQUIRED REAGENTS

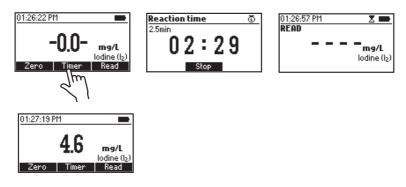

Code	Description	Quantity
HI93718-0	lodine Reagent	1 packet

REAGENT SETS


HI93718-01	Reagents for 100 tests
HI93718-03	Reagents for 300 tests
For other accessor	ries see ACCESSORIES section.

MEASUREMENT PROCEDURE

- Select the lodine method using the procedure described in the METHOD SELECTION section.
- Fill the cuvette with 10 mL of unreacted sample (up to the mark). Replace the plastic stopper and the cap.
- Insert the cuvette into the holder and close the lid.


• Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.

- Remove the plastic stopper and the cap and add one packet of H193718-0 lodine Reagent. Replace the plastic stopper and the cap. Shake gently for about 20 seconds to dissolve most of the reagent.
- Insert the cuvette into the holder and close the lid.

• Press **Timer** and the display will show the countdown prior to the measurement or wait 2 minutes and 30 seconds and press **Read**. When the timer ends the meter will perform the reading. The instrument displays the concentration in **mg/L** of **Iodine (I**₂).

INTERFERENCES

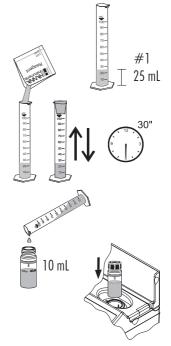
- Bromine, Chlorine, Oxidized forms of Chromium and Manganese, Ozone
- Hardness greater than 500 mg/L CaCO₃, to remove the interference shake the sample for approximately 2 minutes after adding the reagent
- Alkalinity greater than 250 mg/L CaCO₃ or acidity greater than 150 mg/L CaCO₃, the color of the sample may develop only partially or rapidly fade, to remove the interference neutralize the sample with diluted HCl or NaOH

10.33. IRON LOW RANGE

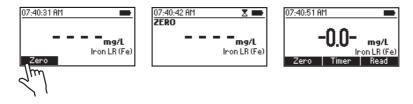
SPECIFICATIONS

Range	0.000 to 1.600 mg/L (as Fe)
Resolution	0.001 mg/L
Accuracy	\pm 0.010 mg/L \pm 8% of reading at 25 °C
Light Source	LED with narrow band interference filter $@$ 575 nm
Method	Adaptation of the TPTZ Method

REQUIRED REAGENTS


Code	Description	Quantity
HI93746-0	Iron Low Range Reagent	2 packets

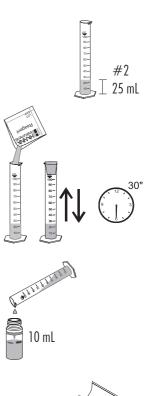
REAGENT SETS


HI93746-01	Reagents for 50 tests
HI93746-03	Reagents for 150 tests
For other accessori	es see ACCESSORIES section.

MEASUREMENT PROCEDURE

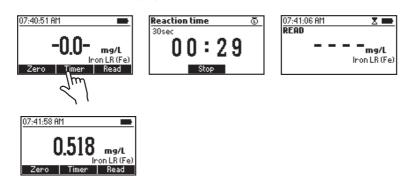
- Select the Iron LR method using the procedure described in the METHOD SELECTION section.
- Fill one graduated mixing cylinder up to the 25 mL mark with deionized water.
- Add one packet of H193746-0 Iron Low Range Reagent, close the cylinder and shake vigorously for 30 seconds. This is the blank.
- Fill a cuvette with 10 mL of the blank (up to the mark). Replace the rubber stopper.
- Insert the cuvette into the holder and close the lid.

• Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.



- Remove the cuvette.
- Fill another graduated mixing cylinder up to the 25 mL mark with the sample.

• Add one packet of H193746-0 Iron Low Range Reagent, close the cylinder and shake vigorously for 30 seconds. This is the reacted sample.


• Fill a cuvette with 10 mL of the reacted sample (up to the mark). Replace the rubber stopper.

• Insert the sample into the holder and close the lid.

 Press Timer and the display will show the countdown prior to the measurement or wait 30 seconds and press Read. When the timer ends the meter will perform the reading. The instrument displays concentration in mg/L of iron (Fe).

INTERFERENCES

- Manganese above 50.0 mg/L
- Cadmium, Molybdenum above 4.0 mg/L
- Cyanide above 2.8 mg/L
- Chromium(VI) above 1.2 mg/L
- Nickel above 1.0 mg/L
- Nitrite ion above 0.8 mg/L
- Copper above 0.6 mg/L
- Mercury above 0.4 mg/L
- Chromium(III) above 0.25 mg/L
- Cobalt above 0.05 mg/L
- Sample pH should be between 3 and 4 to avoid fading or turbidity formation

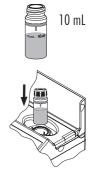
10.34. IRON HIGH RANGE

SPECIFICATIONS

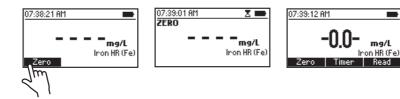
Range	0.00 to 5.00 mg/L (as Fe)
Resolution	0.01 mg/L
Accuracy	\pm 0.04 mg/L \pm 2% of reading at 25 °C
Light Source	LED with narrow band interference filter @ 525 nm
Method	Adaptation of Standard Methods for the Examination of Water and
	Wastewater, 23 rd Edition, 3500-Fe B, Phenanthroline Method

Quantity 1 packet

REQUIRED REAGENTS

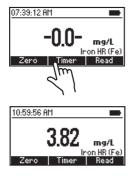

Code	Description	
HI93721-0	Iron High Range Reagent	

REAGENT SETS

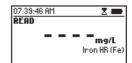

HI93721-01	Reagents for 100 tests
HI93721-03	Reagents for 300 tests
For other accessor	ies see ACCESSORIES section.

MEASUREMENT PROCEDURE

- Select the Iron HR method using the procedure described in the METHOD SELECTION section.
- Fill the cuvette with 10 mL of unreacted sample (up to the mark). Replace the plastic stopper and the cap.


- Insert the cuvette into the holder and close the lid.
- Press Zero. The display will show "-0.0-" the meter is zeroed and ready for measurement.

 Remove the cuvette and add the content of one packet of H193721-0 Iron High Range Reagent. Replace the plastic stopper and the cap. Shake until powder is completely dissolved.


- Insert the cuvette into the holder and close the lid.
- Press **Timer** and the display will show the countdown prior to the measurement or wait 3 minutes and press **Read**. When the timer ends the meter will perform the reading. The instrument displays the result in **mg/L** of **iron (Fe)**.

ō

Reaction time

INTERFERENCES

- Chloride above 185000 mg/L
- Magnesium above 100000 mg/L CaCO₃
- Calcium above 10000 mg/L CaCO₃
- Molybdate Molybdenum above 50 mg/L

10.35. IRON(II)

SPECIFICATIONS

Range	0.00 to 6.00 mg/L (as Fe ²⁺)
Resolution	0.01 mg/L
Accuracy	\pm 0.10 mg/L \pm 2% of reading at 25 °C
Light Source	LED with narrow band interference filter @ 525 nm
Method	Adaptation of Standard Methods for the Examination of Water and
	Wastewater, 23 rd Edition, 3500-Fe B, Phenanthroline Method

REQUIRED REAGENTS

Code Description	
HI96776-0	Iron(II) Reagent

Quantity 1 packet

REAGENTS SETS

HI96776-01	Reagents for 100 tests
HI96776-03	Reagents for 300 testss
For other accessorie	es see ACCESSORIES section.

PRINCIPLE

In aqueous solution, reactive ferrous iron (Fe^{2+}) reacts with 1,10-phenanthroline to form an orangered complex.

APPLICATION

Surface water, drinking water, mineral and groundwater, process control

SIGNIFICANCE & USE

Surface water typically contains up to 0.7 mg/L of iron. Drinking water typically contains up to 0.3 mg/L of iron, but this level may increase significantly if plumbing fixtures contain iron. In well-oxygenated, non-acidic waters, iron exists mainly in the ferric form (Fe^{3+}) and will precipitate as iron oxide hydroxide (FeO(OH)). However, anoxic water may have high levels of dissolved ferrous iron (Fe^{2+}) which could precipitate in heating/cooling systems or other equipment after exposure to air. The Iron(II) method measures the ferrous (Fe^{2+}) form of iron.

MEASUREMENT PROCEDURE

Warning: Method is temperature-dependent. Sample temperature must be between 18 °C and 22 °C.

- Select the Iron(II) method using the procedure described in the METHOD SELECTION section.
- Fill the cuvette with 10 mL of unreacted sample (up to the mark). Replace the plastic stopper and the cap.
- Insert the cuvette into the holder and close the lid.

mg/L

Iron(II) (Fe2+)

09:31:48

• Press Zero. The display will show "-0.0-"; the meter is zeroed and ready for measurement.

Χ.

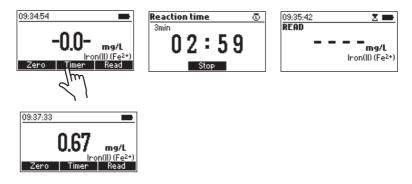
mg/L

Iron(II) (Fe²⁺)

09:33:18 ZERO

• Remove the cuvette and add the content of one packet of H196776-0 Iron(II) Reagent. Replace the plastic stopper and the cap. Shake gently for 30 seconds.

• Insert the cuvette into the holder and close the lid.


10 ml

 Press Timer and the display will show the countdown prior to the measurement or wait 3 minutes and press Read. The instrument displays the result in mg/L of Iron (Fe²⁺).

Warning: Timing is critical for accurate measurement. Reaction times beyond 3 minutes may cause some ferric iron (Fe^{3+}) to also react, producing false high measurements.

INTERFERENCES

- Chloride, Sulfate above 1000 mg/L
- Ammonium, Calcium, Potassium, Sodium above 500 mg/L
- Silver above 100 mg/L
- Carbonate, Chromium(III) and (VI), Cobalt, Lead, Mercury, Nitrate, Zinc above 50 mg/L
- Nickel above 25 mg/L
- Copper above 10 mg/L
- Tin above 5 mg/L
- Extreme pH or highly buffered samples, the pH of the sample must be between 3.8 and 5.5 after addition of the reagent

10.36. IRON(II)/(III)

SPECIFICATIONS

Range	0.00 to 6.00 mg/L (as Fe)
Resolution	0.01 mg/L
Accuracy	\pm 0.10 mg/L \pm 2% of reading at 25 °C
Light Source	LED with narrow band interference filter @ 525 nm
Method	Adaptation of Standard Methods for the Examination of Water and
	Wastewater, 23 rd Edition, 3500-Fe B, Phenanthroline Method

REQUIRED REAGENTS

Code	Description	Quantity
HI96777A-0	Iron(II)/(III) Reagent A	1 packet
HI96777B-0	Iron(II)/(III) Reagent B	1 packet

REAGENTS SETS

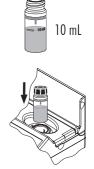
HI96777-01	Reagents for 100 tests
HI96777-03	Reagents for 300 tests
For other accessori	es see ACCESSORIES section

PRINCIPLE

During the first measurement, ferrous iron (Fe^{2+}) reacts with 1,10-phenanthroline to form an orangered complex. During the second measurement, ferric iron (Fe^{3+}) is converted to ferrous iron (Fe^{2+}) by the addition of Reagent B; the resulting measurement is the sum of ferrous (Fe^{2+}) and ferric (Fe^{3+}) iron.

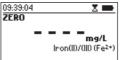
APPLICATION

Surface water, drinking water, mineral and groundwater, process control


SIGNIFICANCE & USE

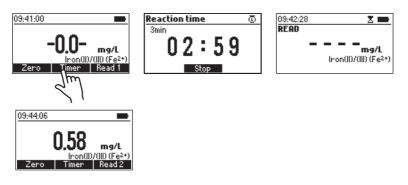
Surface water typically contains up to 0.7 mg/L of iron. Drinking water typically contains up to 0.3 mg/L of iron, but this level may increase significantly if plumbing fixtures contain iron. In well-oxygenated, non-acidic waters, iron exists mainly in the ferric form (Fe^{3+}) and will precipitate as iron oxide hydroxide (FeO(OH)). However, anoxic water may have high levels of dissolved ferrous iron (Fe^{2+}) which could precipitate in heating/cooling systems or other equipment after exposure to air.


The Iron(II)/(III) method can be used to distinguish between the ferrous (Fe^{2+}) and ferric (Fe^{3+}) forms of iron in a 2-step measurement process.


MEASUREMENT PROCEDURE

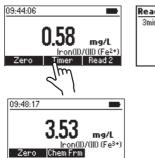
- Select the Iron(II)/(III) method using the procedure described in the METHOD SELECTION section.
- Fill the cuvette with 10 mL of unreacted sample (up to the mark). Replace the plastic stopper and the cap.
- Insert the cuvette into the holder and close the lid.

• Press Zero. The display will show "-0.0-"; the meter is zeroed and ready for measurement.


• Remove the cuvette and add the content of one packet of H196777A-0 Iron(II)/(III) Reagent A. Replace the plastic stopper and the cap. Shake gently for 30 seconds.

• Insert the cuvette into the holder and close the lid

 Press Timer and the display will show the countdown prior to the measurement or wait 3 minutes and press Read 1. The instrument displays the result in mg/L of Iron (Fe²⁺).



Warning: Timing is critical for accurate measurement. Reaction times beyond 3 minutes may cause some ferric iron (Fe^{3+}) o also react, producing false high measurements.

• Remove the plastic stopper and the cap from the cuvette and add the content of one packet of HI96777B-O Iron(II)/(III) Reagent B. Replace the plastic stopper and the cap. Shake gently for 30 seconds.

- Insert the cuvette into the holder and close the lid.
 Note: If Zero is pressed, the instrument returns to measure Iron(II) (Fe²⁺).
- Press Timer and the display will show the countdown prior to the measurement or wait 3 minutes and press Read 2. The instrument displays the result in mg/L of Iron(III) (Fe³⁺).

• Press Chem Frm to cycle through the available chemical forms of $Fe^{2+} + Fe^{3+}$ and Fe^{2+} .

Note: Each chemical form can be logged independently by pressing the LOG key.

• Press the \blacktriangle or \blacktriangledown key to return to the measurement screen.

INTERFERENCES

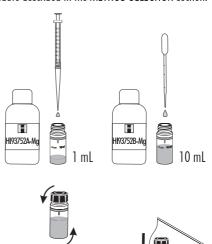
- Chloride, Sulfate above 1000 mg/L
- Ammonium, Calcium, Potassium, Sodium above 500 mg/L
- Silver above 100 mg/L
- Carbonate, Chromium(III) and (VI), Cobalt, Lead, Mercury, Nitrate, Zinc above 50 mg/L
- Nickel above 25 mg/L
- Copper above 10 mg/L
- Tin above 5 mg/L
- Extreme pH or highly buffered samples, the pH of the sample must be between 3.8 and 5.5 after addition of the reagents

10.37. MAGNESIUM

SPECIFICATIONS

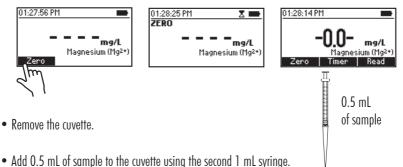
Range	0 to 150 mg/L (as Mg ²⁺)
Resolution	1 mg/L
Accuracy	\pm 5 mg/L \pm 3% of reading at 25 °C
Light Source	LED with narrow band interference filter @ 466 nm
Method	Adaptation of the Calmagite Method

REQUIRED REAGENTS

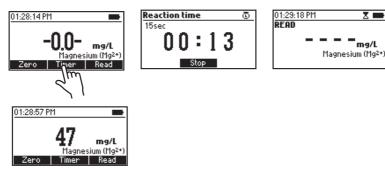

Code	Description	Quantity
H193752A-Mg	Magnesium Reagent A	1 mL
H193752B-Mg	Magnesium Reagent B	9 mL

REAGENT SETS

HI937520-01	Reagents for 50 tests
HI937520-03	Reagents for 150 tests
For other accessories	see ACCESSORIES section.


MEASUREMENT PROCEDURE

- Select the Magnesium method using the procedure described in the METHOD SELECTION section.
- Add 1 mL of H193752A-Mg Magnesium Reagent A to the cuvette using a 1 mL syringe and use the pipette to fill the cuvette up to the 10 mL mark with the H193752B-Mg Magnesium Reagent B.
- Replace the plastic stopper and the cap. Invert several times to mix.
- Insert the cuvette into the holder and close the lid.



• Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.

- Replace the plastic stopper and the cap. Invert several times to mix.
- Insert the cuvette into the holder and close the lid.
- Press **Timer** and the display will show the countdown prior to the measurement or wait 15 seconds and press **Read**. When the timer ends the meter will perform the reading. The instrument displays the results in **mg/L** of **magnesium (Mg²⁺)**.

INTERFERENCES

- Acidity, Alkalinity above 1000 mg/L CaCO₃
- Calcium above 200 mg/L
- Aluminum, Copper, Iron must be absent

10.38. MANGANESE LOW RANGE

SPECIFICATIONS

Range	O to 300 μ g/L (as Mn)
Resolution	1 µg/L
Accuracy	\pm 10 μ g/L \pm 3% of reading at 25 °C
Light Source	LED with narrow band interference filter @ 575 nm
Method	Adaptation of the PAN Method

REQUIRED REAGENTS

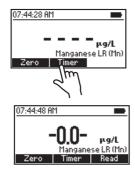
Code	Description	Quantity
HI93748A-0	Manganese Low Range Reagent A	2 packets
HI93748B-0	Manganese Low Range Reagent B	0.40 mL
HI93748C-0	Manganese Low Range Reagent C	2 mL
HI93703-51	Dispersing Agent	6 drops

REAGENT SETS

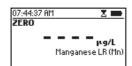
HI93748-01	Reagents for 50 tests
HI93748-03	Reagents for 150 tests
For other accessori	es see ACCESSORIES section

MEASUREMENT PROCEDURE

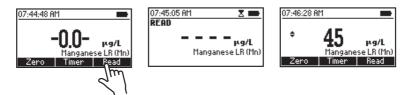
- Select the Manganese LR method using the procedure described in the METHOD SELECTION section.
- Fill one cuvette (#1) with 10 mL of deionized water (up to the mark).
- Fill a second cuvette (#2) with 10 mL of sample (up to the mark).
- Add one packet of H193748A-0 Manganese Low Range Reagent A to each cuvette. Replace the plastic stoppers and the caps. Shake gently until completely dissolved.

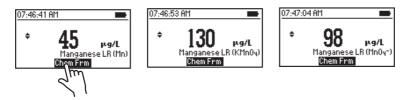


• Add 0.2 mL of the H193748B-0 Manganese Low Range Reagent B to each cuvette. Replace the plastic stoppers and the caps. Invert gently to mix for about 30 seconds.


- Add 1 mL of the H193748C-0 Manganese Low Range Reagent C to each cuvette, replace the plastic stoppers and the caps. Shake gently.
- Add 3 drops of HI93703-51 Dispersing Agent to each cuvette. Replace the plastic stoppers and the caps. Invert gently to mix for about 30 seconds.
- Insert the first cuvette (#1) with the reacted deionized water into the holder and close the lid.

 Press Timer and the display will show the countdown prior to zeroing the blank or wait 2 minutes and then press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.




• Insert the second cuvette (#2) with the reacted sample into the holder and close the lid.

• Press Read to start the reading. The instrument displays the results in µg/L of manganese (Mn).

- Press the \blacktriangle or \blacktriangledown key to access the second level functions.
- Press Chem Frm to convert the result to $\mu g/L$ of potassium permanganate (KMnO₄) and permanganate (MnO₄⁻).

• Press the \blacktriangle or \blacktriangledown key to return to the measurement screen.

INTERFERENCES

- Calcium above 200 mg/L CaCO₃
- Magnesium above 100 mg/L CaCO₃
- Copper above 50 mg/L
- Nickel above 40 mg/L
- Aluminum, Cobalt above 20 mg/L
- Zinc above 15 mg/L
- Cadmium, Iron above 10 mg/L
- Lead above 0.5 mg/L

10.39. MANGANESE HIGH RANGE

SPECIFICATIONS

Range	0.0 to 20.0 mg/L (as Mn)
Resolution	0.1 mg/L
Accuracy	\pm 0.2 mg/L \pm 3% of reading at 25 °C
Light Source	LED with narrow band interference filter @ 525 nm
Method	Adaptation of Standard Methods for the Examination of Water and
	Wastewater, 18 th Edition, Periodate Method

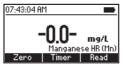
REQUIRED REAGENTS

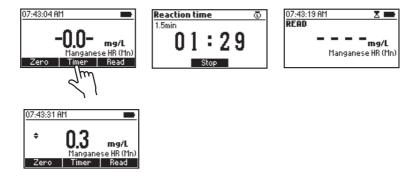
Code	Description	Quantity
HI93709A-0	Manganese High Range Reagent A	1 packet
HI93709B-0	Manganese High Range Reagent B	1 packet

REAGENT SETS

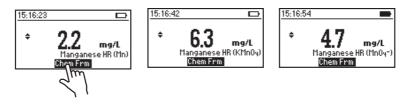

HI93709-01	Reagents for 100 tests
HI93709-03	Reagents for 300 tests
For other accessories	s see ACCESSORIES section.

MEASUREMENT PROCEDURE


- Select the Manganese HR method using the procedure described in the METHOD SELECTION section.
- Fill the cuvette with 10 mL of unreacted sample (up to the mark). Replace the plastic stopper and the cap.


- Insert the cuvette into the holder and close the lid.
- Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.

L
Mn)



- Remove the cuvette.
- Add one packet of H193709A-0 Manganese High Range Reagent A. Replace the plastic stopper and the cap. Shake gently for 2 minutes to mix.
- Add one packet of HI93709B-0 Manganese High Range Reagent B. Replace the plastic stopper and the cap. Shake gently for 2 minutes to mix.
- Insert the cuvette into the holder and close the lid.
- Press **Timer** and the display will show the countdown prior to the measurement or wait 1 minute and 30 seconds and press **Read**. When the timer ends the meter will perform the reading. The instrument displays the results in **mg/L** of **manganese (Mn)**.

• Press the \blacktriangle or \blacktriangledown key to access the second level functions.

• Press Chem Frm to convert the result to mg/L potassium permanganate (KMnO₄) and permanganate (MnO₄⁻).

• Press the \blacktriangle or \blacktriangledown key to return to the measurement screen.

INTERFERENCES

- Magnesium above 100000 mg/L
- Chloride above 70000 mg/L
- Calcium above 700 mg/L
- Iron above 5 mg/L

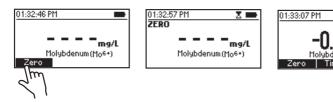
10.40. MOLYBDENUM

SPECIFICATIONS

Range	0.0 to 40.0 mg/L (as Mo^{6+})		
Resolution	0.1 mg/L		
Accuracy	± 0.3 mg/L $\pm 5\%$ of reading	g at 25 °C	
Light Source	LED with narrow band interfer	LED with narrow band interference filter @ 420 nm	
Method	Adaptation of the Mercaptoacetic Acid Method		
REQUIRED REAGENTS			
Code	Description	Quantity	
HI93730A-0	Molybdenum Reagent A	1 packet	
HI93730B-0	Molybdenum Reagent B	1 packet	
HI93730C-0	Molybdenum Reagent C	1 packet	
REAGENT SETS			
HI93730-01	Reagents for 100 tests		
HI93730-03	Reagents for 300 tests		
For other accessories see ACCESSORIES section.			

MEASUREMENT PROCEDURE

- Select the Molybdenum method using the procedure described in the METHOD SELECTION section.
- Fill the cuvette with 10 mL of unreacted sample (up to the mark). Replace the plastic stopper and the cap.

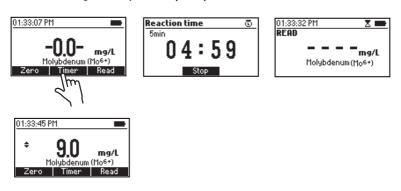


10 mL

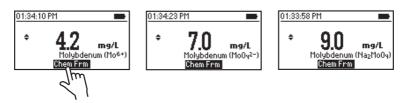
mg/l

num (Mo6+)

- Insert the cuvette into the holder and close the lid.
- Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.



• Fill one graduated mixing cylinder up to the 25 mL mark with the sample.


- Add one packet of HI93730A-0 Molybdenum Reagent A to the cylinder, close and invert several times until completely dissolved.
- Add one packet of HI93730B-0 Molybdenum Reagent B to the cylinder, close and invert several times until completely dissolved.
- Add one packet of H193730C-0 Molybdenum Reagent C to the cylinder, close and shake vigorously.
- Fill an empty cuvette with 10 mL of reacted sample (up to the mark). Replace the plastic stopper and the cap.
- Insert the cuvette into the holder and close the lid.

 Press Timer and the display will show the countdown prior to the measurement or wait 5 minutes and press Read. When the timer ends the meter will perform the reading. The instrument displays concentration in mg/L of molybdenum (Mo⁶⁺).

- Press the \blacktriangle or \blacktriangledown key to access the second level functions.
- Press Chem Frm to convert the result to mg/L of molybdate (MoO₄²⁻) and sodium molybdate (Na₂MoO₄).

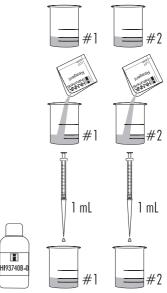
• Press the \blacktriangle or \blacktriangledown key to return to the measurement screen.

INTERFERENCES

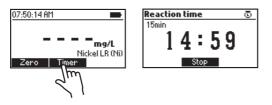
- Chromium above 1000 mg/L
- Sulfate above 200 mg/L
- Aluminum, Iron, Nickel above 50 mg/L
- Copper above 10 mg/L
- Nitrite must be absent
- Highly buffered samples or samples with extreme pH may exceed the buffering capacity of the reagents

10.41. NICKEL LOW RANGE

SPECIFICATIONS

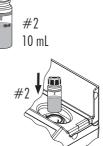

STEERING			
Range	0.000 to 1.000 mg/L (as Ni)		
Resolution	0.001 mg/L		
Accuracy	\pm 0.010 mg/L \pm 7% of reading at 25	°C	
Light Source	LED with narrow band interference filter	@ 575 nm	
Method	Adaptation of the PAN method		
REQUIRED REAGENTS			
Code	Description	Quantity	
HI93740A-0	Nickel Low Range Reagent A	2 packets	
HI93740B-0	Nickel Low Range Reagent B	2 mL	
HI93740C-0	Nickel Low Range Reagent C	2 packets	
HI93703-51	Dispersing Agent (optional reagent)	4-6 drops	
REAGENT SETS			
HI93740-01	Reagents for 50 tests		
HI93740-03	Reagents for 150 tests		
For other accessories see ACCESSORIES section.			

MEASUREMENT PROCEDURE


- Select the Nickel LR method using the procedure described in the METHOD SELECTION section. Note: For best results samples should be between 20 °C and 24 °C.
- Fill one graduated beaker with 25 mL of deionized water (blank) and another one with 25 mL of sample.
- Add one packet of H193740A-0 Nickel Low Range Reagent A to each beaker. Cap and swirl gently until the reagent is dissolved.

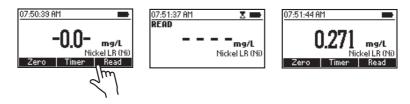
Note: If sample contains iron (Fe^{3+}) , it is important that all powder is dissolved before continuing.

• Add 1 mL of H193740B-0 Nickel Low Range Reagent B to each beaker and swirl to mix.


• Press Timer and the display will show a countdown or wait 15 minutes.

- Add one packet of H193740C-0 Nickel Low Range Reagent C to each beaker, cap and swirl to mix until completely dissolved.
- Fill one cuvette (#1) with 10 mL of the blank (up to the mark). Replace the plastic stopper and the cap.
- Insert the cuvette into the holder and close the lid.
- Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.

- Fill a second cuvette (#2) with 10 mL of the reacted sample (up to the mark). Replace the plastic stopper and the cap.
- Insert the second cuvette into the holder and close the lid.


07:50:39 AM

ma/l

Nickel LR (Ni)

• Press Read to start the reading. The instrument displays the results in mg/L of nickel (Ni).

Note: A temperature above 30 °C may cause turbidity. In this case, add 2 to 3 drops of HI93703-51 Dispersing Agent to each cuvette and swirl until turbidity is removed before zeroing the meter and reading the sample.

INTERFERENCES

- Chloride above 8000 mg/L
- Sodium above 5000 mg/L
- Calcium above 1000 mg/L CaCO₃
- Potassium above 500 mg/L
- Magnesium above 400 mg/L
- Molybdenum above 60 mg/L
- Chromium(VI) above 40 mg/L
- Aluminum above 32 mg/L
- Zinc above 30 mg/L
- Manganese above 25 mg/L
- Cadmium, Chromium(III), Fluoride, Lead above 20 mg/L
- Copper above 15 mg/L
- Iron (Ferric) above 10 mg/L
- Cobalt, Iron (Ferrous) must not be present

NICKEL HIGH RANGE

10.42. NICKEL HIGH RANGE

SPECIFICATIONS

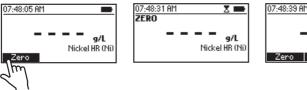
Range	0.00 to 7.00 g/L (as Ni)
Resolution	0.01 g/L
Accuracy	\pm 0.07g/L \pm 4% of reading at 25 °C
Light Source	LED with narrow band interference filter @ 575 nm
Method	Adaptation of the Photometric Method

REQUIRED REAGENTS

Code	Description	Quantity
HI93726-0	Nickel High Range Reagent	1 packet

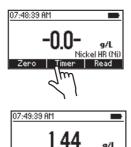
REAGENT SETS

HI93726-01	Reagents for 100 tests
HI93726-03	Reagents for 300 tests
For other accessorie	s see ACCESSORIES section.


MEASUREMENT PROCEDURE

- Select the Nickel HR method using the procedure described in the METHOD SELECTION section.
- Fill the cuvette with 10 mL of unreacted sample (up to the mark). Replace the plastic stopper and the cap.
- Insert the cuvette into the holder and close the lid.

• Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.



- Remove the cuvette and add one packet of H193726-0 Nickel High Range Reagent. Replace the plastic stopper and the cap. Shake gently until completely dissolved.
- Insert the cuvette into the holder and close the lid.

• Press **Timer** and the display will show the countdown prior to the measurement or wait 1 minute and press **Read**. When the timer ends the meter will perform the reading. The instrument displays the concentration in **g/L** of **nickel (Ni)**.

el HR (Ni Read

Reaction	n tim	ne			Ō
1min					
 0 	Ο.	2	E	Ο.	
U	U	•	J	3	
	_		_		
	3	itop			

07:49:32 AM				2 🖬
READ				
-	-	-	-	
				9/L
		- N	licke	I HR (ND

INTERFERENCES

Interference may be caused by:

• Copper

10.43. NITRATE

SPECIFICATIONS

Range	0.0 to 30.0 mg/L (as NO ₃ ⁻ - N)
Resolution	0.1 mg/L
Accuracy	\pm 0.5 mg/L \pm 10% of reading at 25 °C
Light Source	LED with narrow band interference filter $@$ 525 nm
Method	Adaptation of the Cadmium Reduction Method

REQUIRED REAGENTS

Code	Description	Quantity
HI93728-0	Nitrate Reagent	1 packet

REAGENT SETS

HI93728-01	Reagents for 100 tests
HI93728-03	Reagents for 300 tests
For other accessori	ies see ACCESSORIES section.

MEASUREMENT PROCEDURE

- Select the Nitrate method using the procedure described in the METHOD SELECTION section.
- Fill the cuvette with 10 mL of sample (up to the mark). Replace the plastic stopper and the cap.
- Insert the cuvette into the holder and close the lid.

• Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.

- Remove the cuvette and add one packet of H193728-0 Nitrate Reagent.
- Replace the plastic stopper and the cap. Shake vigorously up and down for exactly 10 seconds. Continue to mix by inverting the cuvette gently for 50 seconds, while taking care not to induce air bubbles. Powder will not completely dissolve.

Note: The method is technique sensitive. See procedure described in CUVETTE PREPARATION section for proper mixing technique.

• Insert the cuvette into the holder and close the lid.

mg/L

Bead

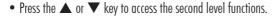
Nitrate (N0s7-N

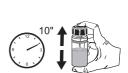
Nitnate (N0s=-N)

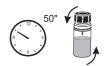
01:36:32 PM

Zero

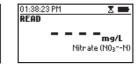
01:38:32 PM

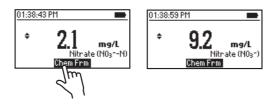

 Press Timer and the display will show the countdown prior to the measurement or wait 4 minutes and 30 seconds and press Read. When the timer ends the meter will perform the reading. The instrument displays the results in mg/L of nitrate-nitrogen (NO₃-N).


ō


28

Reaction time


4.5min



• Press Chem Frm to convert the result to mg/L of nitrate (NO₃⁻).

• Press the \blacktriangle or \blacktriangledown key to return to the measurement screen.

INTERFERENCES

Interference may be caused by:

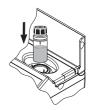
- Ammonia and amines, as urea and primary aliphatic amines
- Chloride above 100 mg/L
- Chlorine above 2 mg/L
- Copper, Iron (Ferric), Strong oxidizing and reducing substances
- Sulfide must be absent

10.44. NITRITE, MARINE ULTRA LOW RANGE

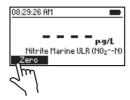
SPECIFICATIONS

Range	0 to 200 μ g/L (as N0 $_{2}^{-}$ -N)
Resolution	1 μg/L
Accuracy	\pm 10 μ g/L \pm 4% of reading at 25 °C
Light Source	LED with narrow band interference filter @ 466 nm
Method	Adaptation of the EPA Diazotization Method 354.1

REQUIRED REAGENTS


Code	Description	Quantity
HI764-25	Nitrite Ultra Low Range Reagent	1 packet

REAGENT SETS


H1764-25 Reagents for 25 tests For other accessories see ACCESSORIES section.

MEASUREMENT PROCEDURE

- Select the Nitrite, Marine ULR method using the procedure described in the METHOD SELECTION section.
- Fill the cuvette with 10 mL of unreacted sample (up to the mark). Replace the plastic stopper and the cap.
- 10 mL

- Insert the cuvette into the holder and close the lid.
- Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.

08:29:36 HM 🛛 🗶 🔜
ZERO
μ _{μg/L}
Nitrite Marine ULR (N02N)
-

- Remove the cuvette.
- Add one packet of H1764-25 Nitrite Ultra Low Range Reagent. Replace the plastic stopper and the cap. Shake gently for about 15 seconds.
- Insert the cuvette into the holder and close the lid.
- Press Timer and the display will show the countdown prior to the measurement or wait 15 minutes and press Read. When the timer ends the meter will perform the reading. The instrument displays concentration in µg/L of nitrite-nitrogen (NO₂⁻-N).

- Press the \blacktriangle or \blacktriangledown key to access the second level functions.
- Press Chem Frm to convert the result to $\mu g/L$ of nitrite (NO₂⁻) and sodium nitrite (NaNO₂).

• Press the \blacktriangle or \blacktriangledown key to return to the measurement screen.

INTERFERENCES

Interference may be caused by:

- Antimonious, Auric, Bismuth, Chloroplatinate ions, Cupric, Iron (Ferric), Iron (Ferrous), Lead, Mercurous, Silver, Strong reducing or oxidating agents
- Nitrate above 100 mg/L could yield falsely high readings

10.45. NITRITE LOW RANGE

SPECIFICATIONS

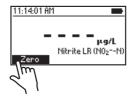
Range	0 to 600 μ g/L (as NO ₂ ⁻ -N)
Resolution	1 µg/L
Accuracy	\pm 20 μ g/L \pm 4% of reading at 25 °C
Light Source	LED with narrow band interference filter $@$ 466 nm
Method	Adaptation of the EPA Diazotization Method 354.1

REQUIRED REAGENTS

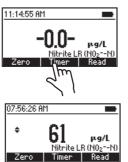
Code	Description	Quantity
HI93707-0	Nitrite Low Range Reagent	1 packet

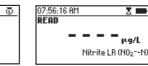
REAGENT SETS

HI93707-01	Reagents for 100 tests
HI93707-03	Reagents for 300 tests
For other accessories s	ee ACCESSORIES section.


MEASUREMENT PROCEDURE

- Select the Nitrite LR method using the procedure described in the METHOD SELECTION section.
- Fill the cuvette with 10 mL of unreacted sample (up to the mark). Replace the plastic stopper and the cap.
- Insert the cuvette into the holder and close the lid.


• Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.


11:14:22 AM	2 📟
ZERO	
-	
	րց/Լ
	Nitrite LR (NO ₂ N)

11:14:55 AM	1	
_	<u></u>	
	U.U-	μg/L
	Nitrite L	R (N02N)
Zero	Timer	Read

- Remove the cuvette.
- Add one packet of H193707-0 Nitrite Low Range Reagent.
- Replace the plastic stopper and the cap. Shake gently for about 15 seconds.
- Insert the cuvette into the holder and close the lid.
- Press Timer and the display will show the countdown prior to the measurement or wait 15 minutes and press Read. When the timer ends the meter will perform the reading. The instrument displays concentration in µg/L of nitrite-nitrogen (NO₂⁻-N).

- Press the \blacktriangle or \blacktriangledown key to access the second level functions.
- Press Chem Frm to convert the result to μ g/L of nitrite (NO₂) and sodium nitrite (NaNO₂).

- Press the \blacktriangle or \blacktriangledown key to return to the measurement screen.

INTERFERENCES

Interference may be caused by:

- Antimonious, Auric, Bismuth, Chloroplatinate ions, Cupric, Iron (Ferric), Iron (Ferrous), Lead, Mercurous, Silver, Strong reducing or oxidating agents
- Nitrate above 100 mg/L could yield falsely high readings

10.46. NITRITE HIGH RANGE

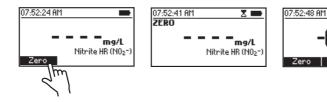
SPECIFICATIONS

Range	0 to 150 mg/L (as NO_2^{-})
Resolution	1 mg/L
Accuracy	\pm 4 mg/L \pm 4% of reading at 25 °C
Light Source	LED with narrow band interference filter @ 575 nm
Method	Adaptation of the Ferrous Sulfate Method

REQUIRED REAGENTS

Code	Description	Quantity
HI93708-0	Nitrite High Range Reagent	1 packet

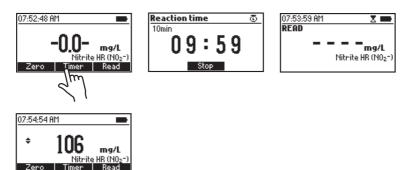
REAGENT SETS


HI93708-01	Reagents for 100 tests
HI93708-03	Reagents for 300 tests
For other accessories	see ACCESSORIES section.

MEASUREMENT PROCEDURE

- Select the Nitrite HR method using the procedure described in the METHOD SELECTION section.
- Fill the cuvette with 10 mL of unreacted sample (up to the mark). Replace the plastic stopper and the cap.

10 mL


- Insert the cuvette into the holder and close the lid.
- Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.

- Remove the cuvette.
- Add one packet of H193708-0 Nitrite High Range Reagent. Replace the plastic stopper and the cap. Shake gently until completely dissolved.

- Insert the cuvette into the holder and close the lid.
- Press Timer and the display will show the countdown prior to the measurement or wait 10 minutes and press **Read**. When the timer ends the meter will perform the reading. The instrument displays concentration in mg/L of nitrite (NO₂⁻).

• Press the \blacktriangle or \blacktriangledown key to access the second level functions.

imer

• Press Chem Frm to convert the result to mg/L of nitrite-nitrogen (NO2-N) and sodium nitrite (NaNO₂).

• Press the \blacktriangle or \blacktriangledown key to return to the measurement screen.

10.47. OXYGEN, DISSOLVED

SPECIFICATIONS

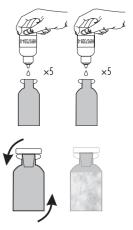
Range	0.0 to 10.0 mg/L (as 0 ₂)
Resolution	0.1 mg/L
Accuracy	\pm 0.4 mg/L \pm 3% of reading at 25 °C
Light Source	LED with narrow band interference filter @ 420 nm
Method	Adaptation of Standard Methods for the Examination of Water and
	Wastewater, 18 th Edition, Azide Modified Winkler Method

REQUIRED REAGENTS

Code	Description	Quantity
HI93732A-0	Dissolved Oxygen Reagent A	5 drops
HI93732B-0	Dissolved Oxygen Reagent B	5 drops
HI93732C-0	Dissolved Oxygen Reagent C	10 drops

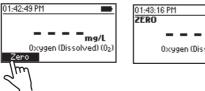
REAGENT SET

HI93732-01	Reagents for 100 tests
HI93732-03	Reagents for 300 tests
For other accessori	ies see ACCESSORIES section


MEASUREMENT PROCEDURE

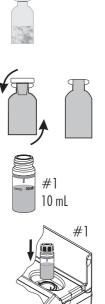
- Select the Oxygen (dissolved) method using the procedure described in the METHOD SELECTION section.
- Fill one 60 mL glass bottle completely with the unreacted sample.
- Replace the cap and ensure that a small part of the sample spills over.
- Remove the cap and add 5 drops of H193732A-0 and 5 drops of H193732B-0.
- Add more sample to fill the bottle completely. Replace the cap and ensure that a part of the sample spills over.

Note: This ensures no air bubbles have been trapped inside the bottle. Trapped air bubbles could alter readings.

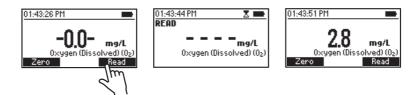

• Invert the bottle several times until the sample turns orangeyellow and a flocculating agent appears.

- Let the sample stand for approximately 2 minutes to allow flocculating agent to settle.
- When the upper half of the bottle is clear, add 10 drops of H193732C-0 Dissolved Oxygen Reagent C.
- Replace the cap and invert the bottle until the settled flocculating agent dissolves completely. The sample is ready for measurement when it is yellow and completely clear.
- Fill the first cuvette (#1) with 10 mL of the unreacted sample (up to the mark). Replace the plastic stopper and the cap.
- Insert the cuvette into the holder and close the lid.

- Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.



- Remove the cuvette.
- Fill second cuvette (#2) with 10 mL of the reacted sample (up to the mark). Replace the plastic stopper and the cap.



×10

• Insert the cuvette into the holder and close the lid.

• Press Read to start the reading. The instrument will display the results in mg/L of oxygen (0₂).

INTERFERENCES

Interference may be caused by:

• Reducing and oxidizing materials

10.48. OXYGEN SCAVENGERS (CARBOHYDRAZIDE)

SPECIFICATIONS

Range	0.00 to 1.50 mg/L (as Carbohydrazide)
Resolution	0.01 mg/L
Accuracy	\pm 0.02 mg/L \pm 3% of reading at 25 °C
Light Source	LED with narrow band interference filter @ 575 nm
Method	Adaptation of the Iron Reduction Method

REQUIRED REAGENTS

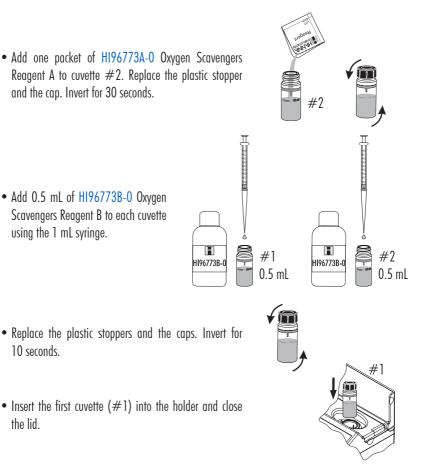

Code	Description	Quantity
HI96773A-0	Oxygen Scavengers Reagent A	2 packets
HI96773B-0	Oxygen Scavengers Reagent B	1 mL

REAGENT SET

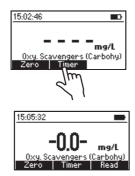
HI96773-01	Reagents for 50 tests
HI96773-03	Reagents for 150 tests
For other accessor	ies see ACCESSORIES section

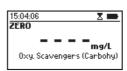
MEASUREMENT PROCEDURE

- Select the Oxy. Scavengers (Carbohy) method using the procedure described in the METHOD SELECTION section.
- Fill first cuvette (#1) with 10 mL of deionized water (up to the mark).

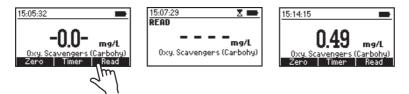


• Add one packet of H196773A-0 Oxygen Scavengers Reagent A to cuvette #1. Replace the plastic stopper and the cap. Invert for 30 seconds.





• Press **Timer** and the display will show countdown prior to the measurement or wait 10 minutes and press **Zero**. The display will show "-0.0-" when the meter is zeroed and ready for measurement.



- Remove the cuvette.
- Insert the second cuvette (#2) into the holder and close the lid.

• Press Read to start reading. The instrument displays the results in mg/L of carbohydrazide.

INTERFERENCES

Interference may be caused by:

• Borate (as Na₂B₄O₇), Cobalt, Copper, Iron (Ferrous), Hardness (as CaCO₃), Light, Lignosulfonates, Manganese, Molybdenum, Nickel, Phosphate, Phosphonates, Sulfate, Temperature and Zinc

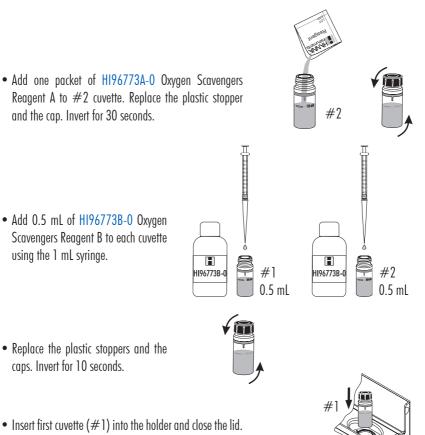
10.49. OXYGEN SCAVENGERS (DIETHYLHYDROXYLAMINE) (DEHA)

SPECIFICATIONS

Range	0 to 1000 µg/L (as DEHA)		
Resolution	1 µg/L		
Accuracy	\pm 5 μ g/L \pm 5% of reading at 25 $^\circ$	C	
Light Source	LED with narrow band interference filter @ 575 nm		
Method	Adaptation of the Iron Reduction Method		
REQUIRED REAGENTS			
Code	Description	Quantity	
HI96773A-0	Oxygen Scavengers Reagent A	2 packets	
HI96773B-0	Oxygen Scavengers Reagent B	1 mL	
REAGENT SET			
HI96773-01	Reagents for 50 tests		
HI96773-03	Reagents for 150 tests		
For other accessories see ACCESSORIES section.			

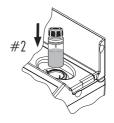
MEASUREMENT PROCEDURE

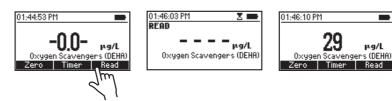
- Select the Oxy. Scavengers (DEHA) method using the procedure described in the METHOD SELECTION section.
- Fill first cuvette (#1) with 10 mL of deionized water (up to the mark).


10 mL

#2


• Fill second cuvette (#2) with 10 mL of sample (up to the mark).


- Press Timer and the display will show countdown prior to the measurement or wait 10 minutes and press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.



μg/L
engers (DEHA)

- Remove the cuvette.
- Insert the second cuvette (#2) into the holder and close the lid.

• Press **Read** to start reading. The instrument displays the results in μ g/L of DEHA.

INTERFERENCES

Interference may be caused by:

 Borate (as Na₂B₄O₇), Cobalt, Copper, Iron (Ferrous), Hardness (as CaCO₃), Light, Lignosulfonates, Manganese, Molybdenum, Nickel, Phosphate, Phosphonates, Sulfate, Temperature and Zinc

10.50. OXYGEN SCAVENGERS (HYDROQUINONE)

SPECIFICATIONS

Range	0.00 to 2.50 mg/L (as Hydroquinone)
Resolution	0.01 mg/L
Accuracy	\pm 0.04 mg/L \pm 3% of reading at 25 °C
Light Source	LED with narrow band interference filter $@$ 575 nm
Method	Adaptation of the Iron Reduction Method

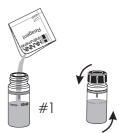
REQUIRED REAGENTS

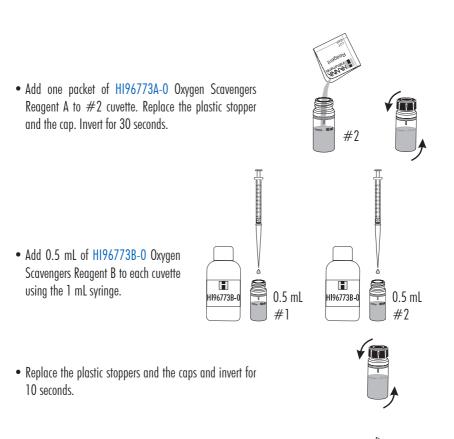
Code	Description	Quantity
HI96773A-0	Oxygen Scavengers Reagent A	2 packets
HI96773B-0	Oxygen Scavengers Reagent B	1 mL

REAGENT SET

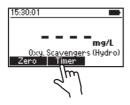
HI96773-01	Reagents for 50 tests
HI96773-03	Reagents for 150 tests
For other accessor	ies see ACCESSORIES section

MEASUREMENT PROCEDURE

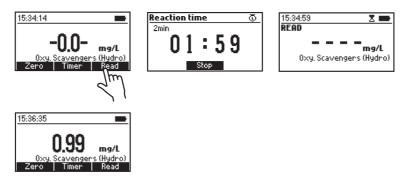

- Select the Oxy. Scavengers (Hydro) method using the procedure described in the METHOD SELECTION section.
- Fill first cuvette (#1) with 10 mL of deionized water (up to the mark).



• Add one packet of H196773A-0 Oxygen Scavengers Reagent A to #1 cuvette. Replace the plastic stopper and the cap. Invert for 30 seconds.






- Insert first cuvette (#1) into the holder and close the lid.
- Press **Timer** and the display will show countdown prior to the measurement or wait 2 minutes and press **Zero**. The display will show "-0.0-" when the meter is zeroed and ready for measurement.

15:31:55	Z 🖚
ZERO	
• Oxy.	mg/L Scavengers (Hydro)

- Remove the cuvette.
- Insert the second cuvette (# 2) into the holder and close the lid.
- #2
- Press Read to start reading. The instrument displays the results in mg/L of hydroquinone.

INTERFERENCES

Interference may be caused by:

 Borate (as Na₂B₄O₇), Cobalt, Copper, Iron (Ferrous), Hardness (as CaCO₃), Light, Lignosulfonates, Manganese, Molybdenum, Nickel, Phosphate, Phosphonates, Sulfate, Temperature and Zinc

10.51. OXYGEN SCAVENGERS (ISO-ASCORBIC ACID)

SPECIFICATIONS

Range	0.00 to 4.50 mg/L (as Iso-Ascorbic Acid)
Resolution	0.01 mg/L
Accuracy	\pm 0.03 mg/L \pm 3 % of reading at 25 °C
Light Source	LED with narrow band interference filter @ 575 nm
Method	Adaptation of the Iron Reduction Method

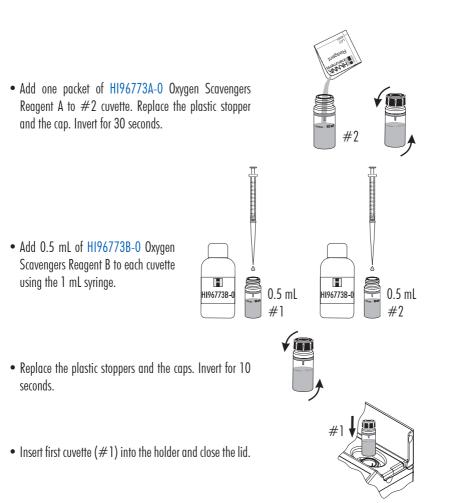
REQUIRED REAGENTS

Code	Description	Quantity
HI96773A-0	Oxygen Scavengers Reagent A	2 packets
HI96773B-0	Oxygen Scavengers Reagent B	1 mL

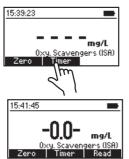
REAGENT SET

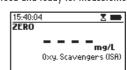
HI96773-01	Reagents for 50 tests
HI96773-03	Reagents for 150 tests
For other accessori	es see ACCESSORIES section

MEASUREMENT PROCEDURE

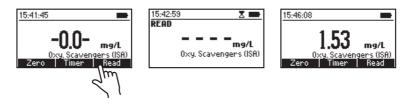

- Select the Oxygen Scavengers (ISA) method using the procedure described in the METHOD SELECTION section.
- Fill first cuvette (#1) with 10 mL of deionized water (up to the mark).
- Fill second cuvette (#2) with 10 mL of sample (up to the mark).

 Add one packet of H196773A-0 Oxygen Scavengers Reagent A to #1 cuvette. Replace the plastic stopper and the cap. Invert for 30 seconds.





• Press **Timer** and the display will show countdown prior to the measurement or wait 10 minutes and press **Zero**. The display will show "-0.0-" when the meter is zeroed and ready for measurement.


Reaction time () 10min 09:57 Stop

- Remove the cuvette.
- Insert the second cuvette (#2) into the holder and close the lid.

• Press Read to start reading. The instrument displays the results in mg/L of Iso-ascorbic acid.

INTERFERENCES

Interference may be caused by:

 Borate (as Na₂B₄O₇), Cobalt, Copper, Iron (Ferrous), Hardness (as CaCO₃), Light, Lignosulfonates, Manganese, Molybdenum, Nickel, Phosphate, Phosphonates, Sulfate, Temperature and Zinc

10.52. OZONE

SPECIFICATIONS

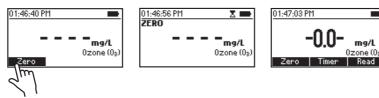
Range	0.00 to 2.00 mg/L (as 0_3)
Resolution	0.01 mg/L
Accuracy	\pm 0.02 mg/L \pm 3% of reading at 25 °C
Light Source	LED with narrow band interference filter $@$ 525 nm
Method	Colorimetric DPD Method

REQUIRED REAGENTS

Code	Description	Quantity
HI93757-0	Ozone Reagent	1 packet
HI93703-52-0	Glycine Powder (Optional Reagent)	1 packet

REAGENT SETS

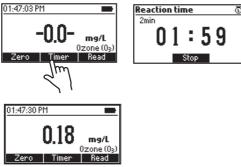
HI93757-01	Reagents for 100 tests	
HI93757-03	Reagents for 300 tests	
HI93703-52	Reagents for 100 tests (Optional)	
For other accessories see ACCESSORIES section		

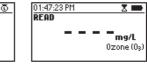

STANDARD MEASUREMENT PROCEDURE

Chlorine free samples

- Select the Ozone method using the procedure described in the METHOD SELECTION section.
- Fill the cuvette with 10 mL of unreacted sample (up to the mark). Replace the plastic stopper and the cap.

- Insert the cuvette into the holder and close the lid.
- Press Zero. The display will show "-0.0-" the meter is zeroed and ready for measurement.



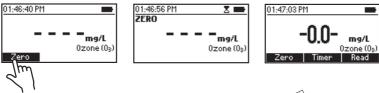

- Remove the cuvette.
- Add one packet of H193757-0 Ozone Reagent. Replace the plastic stopper and the cap. Shake gently for 20 seconds.

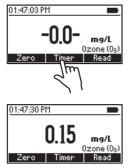
• Press **Timer** and the display will show the countdown prior to the measurement or wait 2 minutes and press **Read**. When the timer ends the meter will perform the reading. The instrument displays the result in **mg/L ozone (O**₃) (chlorine free sample only). For samples containing chlorine, record this value as A.



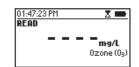
ADDITIONAL MEASUREMENT PROCEDURE

Samples containing chlorine


• Fill the cuvette with 10 mL of unreacted sample (up to the mark).


• Insert the cuvette into the holder and close the lid.

OZONE


• Press Zero. The display will show "-0.0-" the meter is zeroed and ready for measure.

- Remove the cuvette.
- Add one packet of the HI93703-52-0 Glycine Powder. Replace the plastic stopper and the cap. Shake gently until the powder is completely dissolved.
- Add one packet of H193757-0 Ozone Reagent. Replace the plastic stopper and the cap. Shake gently for 20 seconds.
- Insert the cuvette into the holder and close the lid.
- Press **Timer** and the display will show the countdown prior to the measurement or wait 2 minutes and press **Read**. When the timer ends the meter will perform the reading. Record this value as B.

• To determine the **mg/L ozone (O**₃) concentration in sample containing chlorine, subtract value B (additional measurement procedure) from value A (standard measurement procedure).

INTERFERENCES

Interference may be caused by:

- Bromine, Chlorine Dioxide, Iodine
- Hardness greater than 500 mg/L CaCO₃, shake the sample for approximately 2 minutes after adding the powder reagent
- Alkalinity above 250 mg/L CaCO₃ will not reliably develop the full amount of color or it may rapidly fade, neutralize the sample with diluted HCI.
- If the sample is suspected to contain chlorine residue (free or total chlorine), follow the alternative measurement procedure described below, chlorine is a strong interferent.
 - 1. Perform the Standard Measurement Procedure. Record the result as Value A.
 - 2. Perform Additional Measurement Procedure. Record the result as Value B.
 - 3. To determine the ozone concentration in mg/L, subtract Value B from Value A.

mg/L ozone (O_3) = Value A – Value B

F

10.53. pH

SPECIFICATIONS

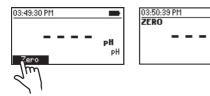
Range	6.5 to 8.5 pH
Resolution	0.1 pH
Accuracy	\pm 0.1 pH at 25 °C
Light Source	LED with narrow band interference filter @ 525 nm
Method	Adaptation of the Phenol Red Method

REQUIRED REAGENTS

Code	Description	Quantity
HI93710-0	pH Reagent	5 drops

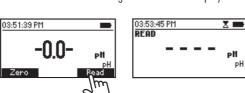
REAGENT SETS

HI93710-01	Reagents for 100 tests
HI93710-03	Reagents for 300 tests
For other accessorie	s see ACCESSORIES section.


MEASUREMENT PROCEDURE

- Select the pH method using the procedure described in the METHOD SELECTION section.
- Fill the cuvette with 10 mL of unreacted sample (up to the mark). Replace the plastic stopper and the cap.
- Insert the cuvette into the holder and close the lid.

• Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.





174

• Remove the cuvette and add 5 drops of H193710-0 pH Reagent Indicator. Replace the plastic stopper and the cap and mix the solution.

- Insert the cuvette into the holder and close the lid.
- Press **Read** to start the reading. The instrument displays the result in **pH**.

10.54. PHOSPHATE, MARINE ULTRA LOW RANGE

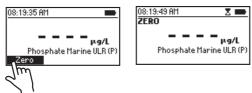
SPECIFICATIONS

Range	0 to 200 µg/L (as P)
Resolution	1 µg/L
Accuracy	\pm 5 μ g/L \pm 5% of reading at 25 °C
Light Source	LED with narrow band interference filter @ 610 nm
Method	Adaptation of Standard Methods for the Examination of Water and
	Wastewater, 20 th Edition, Ascorbic Acid Method

REQUIRED REAGENTS

Code	Description	Quantity
HI736-0	Phosphorus Ultra Low Range Reagent	1 packet

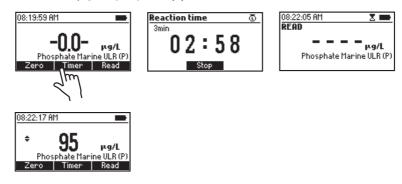
REAGENT SETS

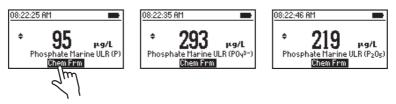

HI736-25 Reagents for 25 tests For other accessories see ACCESSORIES section.

MEASUREMENT PROCEDURE

- Select the Phosphate Marine ULR method using the procedure described in the METHOD SELECTION section.
- Rinse and replace the plastic stopper and the cap. Shake the cuvette several times with unreacted sample.
- Fill the cuvette with 10 mL of sample (up to the mark). Replace the plastic stopper and the cap.
- Insert the cuvette into the holder and close the lid.

• Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.


• Add one packet of H1736-25 Phosphorus Ultra Low Range Reagent. Replace the plastic stopper and the cap. Shake gently (for about 2 minutes) until the powder is completely dissolved.


• Insert the cuvette into the holder and close the lid.

 Press Timer and the display will show the countdown prior to the measurement or wait 3 minutes and press Read. When the timer ends the meter will perform the reading. The instrument displays concentration in µg/L of phosphorus (P).

- Press the \blacktriangle or \blacktriangledown key to access the second level functions.
- Press Chem Frm to convert the result to μ g/L of phosphate (PO₄³⁻) and phosphorus pentoxide (P₂O₅).

• Press the \blacktriangle or \blacktriangledown key to return to the measurement screen.

INTERFERENCES

Interference may be caused by:

- Iron, Silica above 50 mg/L
- Copper, Silicate above 10 mg/L
- Hydrogen sulfide, arsenate, turbid sample and highly buffered samples

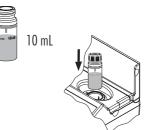
PHOSPHATE LOW RANGE

10.55. PHOSPHATE LOW RANGE

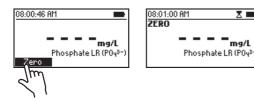
SPECIFICATIONS

Range	0.00 to 2.50 mg/L (as PO_4^{3-})
Resolution	0.01 mg/L
Accuracy	\pm 0.04 mg/L \pm 4% of reading at 25 °C
Light Source	LED with narrow band interference filter $\textcircled{0}$ 610 nm
Method	Adaptation of the Ascorbic Acid Method

REQUIRED REAGENTS


Code	Description	Quantity
HI93713-0	Phosphate Low Range Reagent	1 packet

REAGENT SETS

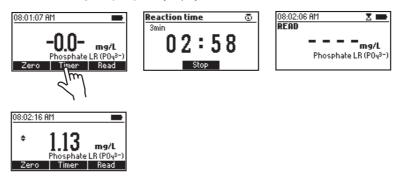

HI93713-01	Reagents for 100 tests
HI93713-03	Reagents for 300 tests
For other accessori	es see ACCESSORIES section.

MEASUREMENT PROCEDURE

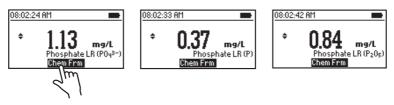
- Select the Phosphate LR method using the procedure described in the METHOD SELECTION section.
- Rinseand replace the plastic stopper and the cap. Shake the cuvette several times with unreacted sample.
- Fill the cuvette with 10 mL of sample (up to the mark). Replace the plastic stopper and the cap.

- Insert the cuvette into the holder and close the lid.
- Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.

• Remove the cuvette and add the content of one packet of H193713-0 Phosphate Low Range Reagent. Replace the plastic stopper and the cap. Shake gently (for about 2 minutes) until the powder is completely dissolved.



08:01:07 AM


• Insert the cuvette into the holder and close the lid.

• Press **Timer** and the display will show the countdown prior to the measurement or wait 3 minutes and press **Read**. When the timer ends the meter will perform the reading. The instrument displays concentration in mg/L of phosphate (PO₄³⁻).

- Press the \blacktriangle or \blacktriangledown key to access the second level functions.
- Press Chem Frm to convert the result to mg/L of phosphorus (P) and phosphorus pentoxide (P_2O_5).

- Press the \blacktriangle or \blacktriangledown key to return to the measurement screen.

INTERFERENCES

Interference may be caused by:

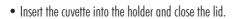
- Iron, Silica above 50 mg/L
- Copper, Silicate above 10 mg/L
- Arsenate, Highly buffered samples, Hydrogen sulfide, Turbid samples

10.56. PHOSPHATE HIGH RANGE

SPECIFICATIONS

Range	0.0 to 30.0 mg/L (as PO4 ³⁻)
Resolution	0.1 mg/L
Accuracy	\pm 1.0 mg/L \pm 4% of reading at 25 °C
Light Source	LED with narrow band interference filter @ 525 nm
Method	Adaptation of Standard Methods for the Examination of Water and
	Wastewater, 18 th Edition, Amino Acid Method

REQUIRED REAGENTS

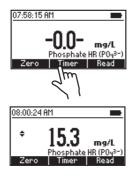

Code	Description	Quantity
HI93717A-0	Phosphate High Range Reagent A	10 drops
HI93717B-0	Phosphate High Range Reagent B	1 packet

REAGENT SETS

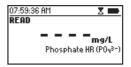
HI93717-01	Reagents for 100 tests
HI93717-03	Reagents for 300 tests
For other accessor	ies see ACCESSORIES section.

MEASUREMENT PROCEDURE

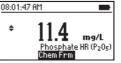
- Select the Phosphate HR method using the procedure described in the METHOD SELECTION section.
- Fill the cuvette with 10 mL of unreacted sample (up to the mark). Replace the plastic stopper and the cap.


• Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.

07:57:54 AM	07:58:08 AM 🗶 🗰 ZERO	07:58:15 AM
mg/L Phosphate HR (P0y ³⁻) Zero	mg/L Phosphate HR (POy³−)	-(Ph Zero
2m		



- Add 10 drops of HI93717A-0 Phosphate HR Reagent A.
- Add one packet of HI93717B-0 Phosphate HR Reagent B to the cuvette. Replace the plastic stopper and the cap. Shake gently until completely dissolved.
- Insert the cuvette into the holder and close the lid.
- Press Timer and the display will show the countdown prior to the measurement or wait 5 minutes and press Read. When the timer ends the meter will perform the reading. The instrument displays the results in mg/L of phosphate (PO₄³⁻).



∛ ×10

- Press the \blacktriangle or \blacktriangledown key to access the second level functions.
- Press Chem Frm to convert the result to mg/L of phosphorus (P) and phosphorus pentoxide (P_2O_5).

08:01:2	8 AM	
÷	5.0 Phose Chemilian	mg/L phate HR (P)

• Press the \blacktriangle or \blacktriangledown key to return to the measurement screen.

INTERFERENCES

- Sulfide
- Chloride above 150000 mg/L
- Magnesium above 40000 mg/L CaCO₃
- Calcium above 10000 mg/L CaCO₃
- Iron (Ferrous) above 100 mg/L

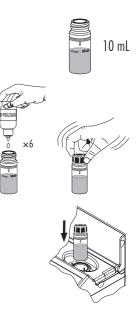
10.57. POTASSIUM

SPECIFICATIONS

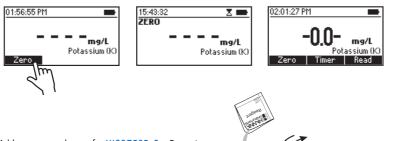
Range	0.0 to 20.0 mg/L (as K)
Resolution	0.1 mg/L
Accuracy	\pm 3.0 mg/L \pm 7% of reading at 25 °C
Light Source	LED with narrow band interference filter @ 466 nm
Method	Adaptation of the Turbidimetric Tetraphenylborate Method

REQUIRED REAGENTS

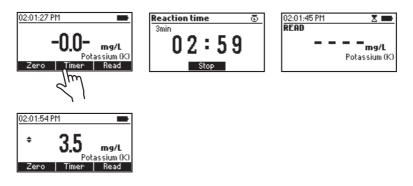
Code	Description	Quantity
HI93750A-0	Potassium Reagent A	6 drops
HI93750B-0	Potassium Reagent B	1 packet


REAGENT SETS

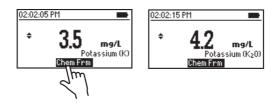
HI93750-01	Reagents for 100 tests
HI93750-03	Reagents for 300 tests
For other accessorie	s see ACCESSORIES section.


MEASUREMENT PROCEDURE

- Select the Potassium method using the procedure described in the METHOD SELECTION section.
- Fill the cuvette with 10 mL of sample (up to the mark).
- Add 6 drops of H193750A-0 Potassium Reagent A. Replace the plastic stopper and the cap. Swirl the solution.


• Insert the cuvette into the holder and close the lid.

• Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.



- Add one packet of H193750B-0 Potassium Reagent B. Replace the plastic stopper and the cap. Shake gently for 1 minute.
- Insert the cuvette into the holder and close the lid.
- Press Timer and the display will show the countdown prior to the measurement or wait 3 minutes.
- After the 3 minutes have passed, invert the cuvette 5 times to mix.
- Insert the cuvette into the holder and close the lid.
- Press Read to start reading. The instrument displays the results in mg/L of potassium (K).

• Press the \blacktriangle or \blacktriangledown key to access the second level functions.

• Press Chem Frm to convert the result to mg/L of potassium oxide (K₂0).

- Press the \blacktriangle or \blacktriangledown key to return to the measurement screen.

INTERFERENCES

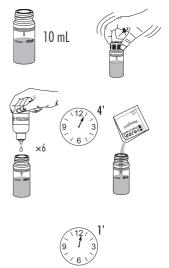
- Chloride above 12000 mg/L
- Calcium above 10000 mg/L CaCO₃
- Magnesium above 8000 mg/L $CaCO_3$
- Sodium above 8000 mg/L
- Ammonium above 10 mg/L

10.58. SILICA LOW RANGE

SPECIFICATIONS

Range	0.00 to 2.00 mg/L (as SiO ₂)
Resolution	0.01 mg/L
Accuracy	\pm 0.03 mg/L \pm 3% of reading at 25 °C
Light Source	LED with narrow band interference filter $@$ 610 nm
Method	Adaptation of the ASTM Manual of Water and Environmental Technology,
	D859, Heteropoly Molybdenum Blue Method

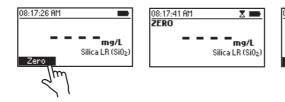
REQUIRED REAGENTS


Code	Description	Quantity
HI93705A-0	Silica Low Range Reagent A	6 drops
HI93705B-0	Silica Low Range Reagent B	1 packet
HI93705C-0	Silica Low Range Reagent C	1 packet

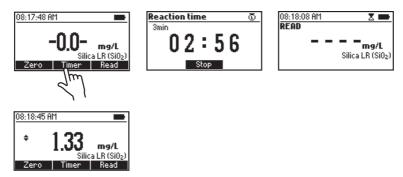
REAGENT SETS

HI93705-01	Reagents for 100 tests
HI93705-03	Reagents for 300 tests
For other accessorie	es see ACCESSORIES section.

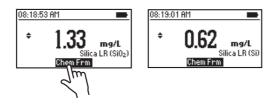
MEASUREMENT PROCEDURE


- Select the Silica LR method using the procedure described in the METHOD SELECTION section.
- Fill the cuvette with 10 mL of unreacted sample (up to the mark).
- Add 6 drops of H193705A-0 Silica LR Reagent A. Replace the plastic stopper and the cap. Swirl the solution.
- Press **Timer** and the display will show the countdown prior to adding H193705B-0 Silica LR Reagent B or wait 4 minutes.
- Add one packet of H193705B-0 Silica LR Reagent B and shake until it is completely dissolved.
- Press **Continue** and the display will show the countdown or wait 1 minute.

• Insert the cuvette into the holder and close the lid.


• Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.

- Remove the cuvette.
- Add one packet of H193705C-0 Silica LR Reagent C and shake until it is completely dissolved.



- Insert the cuvette into the holder and close the lid.
- Press **Timer** and the display will show the countdown prior to the measurement or wait 3 minutes and press **Read**. When the timer ends the meter will perform the reading. The instrument displays result in **mg/L** of **silica** (SiO₂).

• Press the \blacktriangle or \blacktriangledown key to access the second level functions.

• Press Chem Frm to convert the result to mg/L of silicon (Si).

• Press the \blacktriangle or \blacktriangledown key to return to the measurement screen.

INTERFERENCES

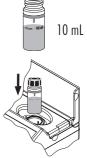
- Phosphate above 75 mg/L, causes an 11% reduction in reading
- Phosphate above 60 mg/L, causes a 2% reduction in reading
- Sulfide and high concentration of iron
- Eliminate color and turbidity interferences by zeroing the meter with the original water sample

10.59. SILICA HIGH RANGE

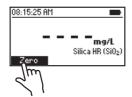
SPECIFICATIONS

Range	0 to 200 mg/L (as SiO ₂)
Resolution	1 mg/L
Accuracy	\pm 1 mg/L \pm 5% of reading at 25 °C
Light Source	LED with narrow band interference filter @ 466 nm
Method	Adaptation of the US EPA Method 370.1 for Drinking, Surface and Saline
	Waters, Domestic and Industrial Wastes & Standard Method 4500-SiO ₂

REQUIRED REAGENTS


Code	Description	Quantity
HI96770A-0	Silica High Range Reagent A	1 packet
HI96770B-0	Silica High Range Reagent B	1 packet
HI96770C-0	Silica High Range Reagent C	1 packet

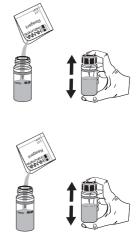
REAGENT SETS


HI96770-01	Reagents for 100 tests
HI96770-03	Reagents for 300 tests
For other accessories	see ACCESSORIES section.

MEASUREMENT PROCEDURE

- Select the Silica HR method using the procedure described in the METHOD SELECTION section.
- Fill the cuvette with 10 mL of unreacted sample (up to the mark). Replace the plastic stopper and the cap.

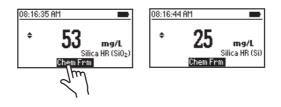
- Insert the cuvette into the holder and close the lid.
- Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.



08:15:35 AM	Σ 🗪
ZERO	
	_{mg/L}
	Silica HR (SiO ₂)


- Remove the cuvette.
- Add one packet of H196770A-0 Silica HR Reagent A. Replace the plastic stopper and the cap. Shake vigorously until completely dissolved.
- Add one packet of H196770B-0 Silica HR Reagent B. Replace the plastic stopper and the cap. Shake vigorously until completely dissolved.
- Press Timer and the display will show the countdown prior adding H196770C-0 Silica HR Reagent C or wait 10 minutes.

- Add one packet of H196770C-0 Silica HR Reagent C. Replace the plastic stopper and the cap. Shake vigorously until completely dissolved.
- Insert the cuvette into the holder and close the lid.


• Press **Continue** and the display will show the countdown prior to the measurement or wait 2 minutes and press **Read**. When the timer ends the meter will perform the reading. The instrument displays the results in **mg/L silica (SiO₂)**.

eactio	n tir	ne			0
2min					
 O 	1		E	Ο.	
U	L	5	Э	Э.	
-	_		-	-	
		Stop			
	_	_	_		_

16:20	AM		Ζ 📟
AD			
	_	-	
			Silica HR (SiO ₂)
			Silica

- Press the \blacktriangle or \blacktriangledown key to access the second level functions.
- Press Chem Frm to convert the result to mg/L of silicon (Si).

• Press the \blacktriangle or \blacktriangledown key to return to the measurement screen.

INTERFERENCES

- Phosphate above 75 mg/L, causes an 11% reduction in reading
- Phosphate above 60 mg/L, causes a 2% reduction in reading
- Sulfide and high concentration of iron
- Eliminate color and turbidity interferences by zeroing the meter with the original water sample

10.60. SILVER

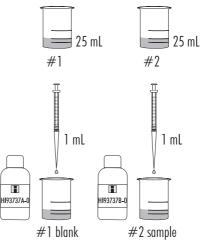
SPECIFICATIONS

Range	0.000 to 1.000 mg/L (as Ag)
Resolution	0.001 mg/L
Accuracy	\pm 0.020 mg/L \pm 5% of reading at 25 °C
Light Source	LED with narrow band interference filter $@$ 575 nm
Method	Adaptation of the PAN Method

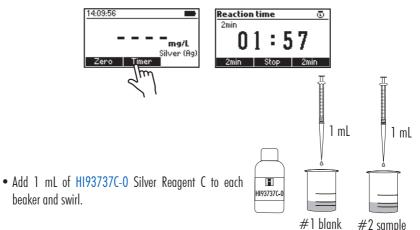
REQUIRED REAGENTS

Code	Description	Quantity
HI93737A-0	Silver Reagent A	1 mL
HI93737B-0	Silver Reagent B	1 mL
HI93737C-0	Silver Reagent C	2 mL
HI93737D-0	Silver Reagent D	2 mL
HI93703-51	Dispersing Agent	6 drops

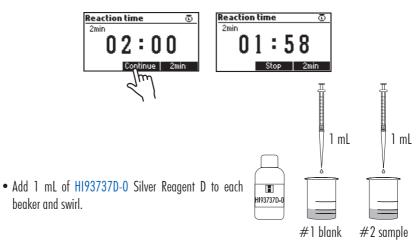
REAGENT SETS

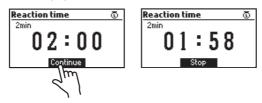

HI93737-01	Reagents for 50 tests
HI93737-03	Reagents for 150 tests
For other accessories	son ACCESSORIES soction

For other accessories see ACCESSORIES section.


Note: For best results perform your tests between 20 °C and 24 °C.

MEASUREMENT PROCEDURE

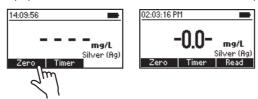

- Select the Silver method using the procedure described in the METHOD SELECTION section.
- Fill two graduated beakers with 25 mL of sample.
- Add 1 mL of H193737A-0 Silver Reagent A to beaker #1 (the blank) and swirl gently to mix.
- Add 1mL of H193737B-0 Silver Reagent B to beaker #2 (the sample) and swirl gently to mix.

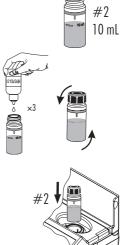

Press Timer and the display will show the countdown prior to adding HI93737C-0 Silver Reagent C or wait 2 minutes.

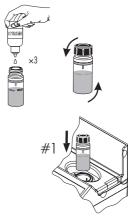
• Press **Continue** and the display will show the countdown prior to adding H193737D-0 Silver Reagent D or wait 2 minutes.

• Press Continue and the display will show the countdown or wait 2 minutes.

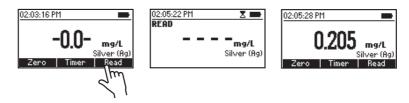
#1


10 mL


- Fill cuvette (#1) up with 10 mL of the blank (up to the mark).
- Add 3 drops of HI93703-51 Dispersing Agent, replace the plastic stopper and the cap. Invert gently for 10 seconds.
- Insert the cuvette into the holder and close the lid.
- Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.


• Fill a second cuvette (#2) up with 10 mL of the reacted

sample (up to the mark).


- Add 3 drops of H193703-51 Dispersing Agent, replace the plastic stopper and the cap. Invert gently for 10 seconds.
- Insert the second cuvette (#2) into the holder and close the lid.

• Press Read to start the reading. The instrument displays the results in mg/L of silver (Ag).

INTERFERENCES

- Chloride above 8000 mg/L
- Sodium above 5000 mg/L
- Calcium, Magnesium above 1000 mg/L CaCO₃
- Potassium above 500 mg/L
- Aluminum, Zinc above 30 mg/L
- Chromium(VI) above 40 mg/L
- Manganese above 25 mg/L
- Cadmium, Chromium(III), Fluoride, Lead above 20 mg/L
- Copper above 15 mg/L
- Iron (Ferric) above 10 mg/L
- Cobalt, Iron (Ferrous), Nickel above 1.5 mg/L

10.61. SULFATE

SPECIFICATIONS

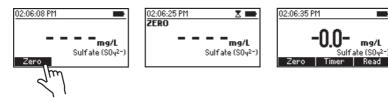
Range	0 to 150 mg/L (as SO_4^{2})
Resolution	1 mg/L
Accuracy	\pm 5 mg/L \pm 3% of reading at 25 °C
Light Source	LED with narrow band interference filter @ 466 nm
Method	Sulfate is precipitated with barium chloride crystals

REQUIRED REAGENTS

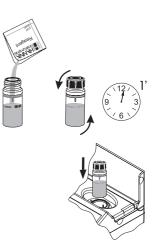
Code	Description	Quantity
HI93751-0	Sulfate Reagent	1 packet

REAGENT SETS

HI93751-01	Reagents for 100 tests
HI93751-03	Reagents for 300 tests
For other accessori	ies see ACCESSORIES section.


MEASUREMENT PROCEDURE

- Select the Sulfate method using the procedure described in the METHOD SELECTION section.
- Fill a cuvette with 10 mL of unreacted sample (up to the mark). Replace the plastic stopper and the cap.
- Insert the cuvette into the holder and close the lid.



• Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.

- Add one packet of H193751-0 Sulfate Reagent.
- Replace the plastic stopper and the cap. Invert gently for 1 minute (about 30 inversions).
- Insert the cuvette into the holder and close the lid.

• Press **Timer** and the display will show the countdown prior to the measurement or wait 5 minutes and press **Read**. When the timer ends the meter will perform the reading. The instrument displays the concentration in mg/L of sulfate (SO₄²⁻).

INTERFERENCES

Interference may be caused by:

- Chloride above 40000 mg/L
- Calcium above 20000 mg/L CaCO₃
- Magnesium above 10000 mg/L MgCO₃

ma/

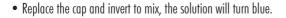
- Silica above 500 mg/L SiO₂
- Color or suspended matter, filter the sample prior to analysis
- Organic matter in large amounts may impede the precipitation of barium sulfate

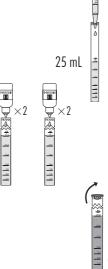
10.62. SURFACTANTS, ANIONIC

SPECIFICATIONS

Range	0.00 to 3.50 mg/L (as SDBS)
Resolution	0.01 mg/L
Accuracy	\pm 0.04 mg/L \pm 3% of reading at 25 °C
Light Source	LED with narrow band interference filter $@$ 610 nm
Method	Adaptation of the US EPA Method 425.1 and Standard Methods for the Examination
	of Water & Wastewater, 20 th Edition, 5540C, Anionic Surfactants as MBAS

REQUIRED REAGENTS


Code	Description	Quantity
HI95769A-0	Anionic Surfactants Reagent A	4 drops
HI95769B-0	Anionic Surfactants Reagent B	2 drops
-	Chloroform Reagent	10 mL
DEIONIZED120	Deionized Water	15 mL


REAGENT SETS

H195769-01 Reagents for 40 tests For other accessories see ACCESSORIES section.

MEASUREMENT PROCEDURE

- Select the Surfactants (Anionic) method using the procedure described in the METHOD SELECTION section.
- Fill the graduated glass vial with 25 mL of sample. *Note:* For improved accuracy the use of class A laboratory pipettes is recommended.
- Add 2 drops of H195769A-0 Anionic Surfactants Reagent A and 2 drops of H195769B-0 Anionic Surfactants Reagent B.

- SURFACTANTS, ANIONIC
- Add 10 mL of Chloroform

Note: Chloroform is more dense than water and will sink to the bottom of the graduated glass vial.

- Invert the vial twice and remove the cap to release any pressure that has built up.
- Replace the cap and shake it vigorously for 30 seconds. *Note:* Ensure the cap is secure when shaking.

02:08:21 PM

• Press Timer and the display will show the countdown or wait 2 minutes. During this period the chloroform layer separates from the aqueous layer, the color of the aqueous layer will fade slightly, while the chloroform layer will turn blue.

mg/l

Reaction time 2min

59

- Remove the cap.
- Remove the upper aqueous layer using the long plastic pipette, do not remove the lower chloroform layer.

Surfactants (Anionic) (SDBS)

- Add 15 mL of deionized water to the vial (up to the 25 mL mark).
- Add 2 drops of H195769A-0 Anionic Surfactants Reagent A.
- Invert the vial twice and remove the cap to release any pressure that has built up.
- Replace the cap and shake it vigorously for 30 seconds. *Note:* Ensure the cap is secure when shaking.

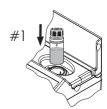
** * * * ***

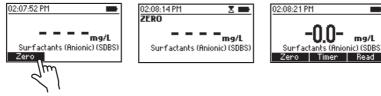
Н

• Press **Continue** and the display will show the countdown or wait 2 minutes. During this period, the chloroform layer separates from the aqueous layer.

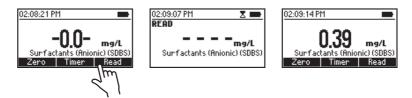
- Remove the cap.
- Insert a clean plastic pipette below the upper aqueous layer to transfer the lower chloroform layer into a cuvette. Do not transfer any of the upper aqueous layer.

Notes: The solution in the cuvette must be clear. If the solution is cloudy, the separation between the chloroform and aqueous layer can be improved by gently warming the vial (holding the vial in your hand). If the chloroform layer contains some aqueous drops hanging on the cuvette wall, gently swirl or invert the cuvette. It is important to transfer at least 7 mL of chloroform layer into the measurement cuvette, thus up to 0.5 cm (1/4") below the 10 mL mark. If the transferred volume is lower than 7 mL, the accuracy of the test may be affected. Please repeat the test waiting for longer than 2 minutes to allow complete separation between the two phases.


- Replace the plastic stopper and the cap. This is the reacted sample (#2).
- Fill another cuvette with 10 mL of Chloroform Reagent (up to the mark). Replace the plastic stopper and the cap. This is the blank (#1).
- Insert the blank (cuvette #1) into the holder and close the lid.



#1 blank


• Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.

- Remove the cuvette.
- Insert the reacted sample (#2) into the instrument and close the lid.

• Press Read to start the reading. The instrument displays the result in mg/L as SDBS.

INTERFERENCES

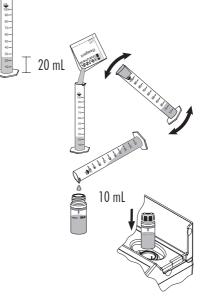
- Absorption particulate matter, Cationic surfactants, Strong oxidants (Cl₂, H₂O₂, S₂O₈²⁻ etc.), Sulfide cause negative interference
- Organic sulfates, Sulfonates cause positive interference
- Highly buffered samples or with extreme pH may exceed the buffering capacity of the reagent, pH should be adjusted between 4 and 9 with diluted NaOH or HCl prior to addition of the reagent

10.63. ZINC

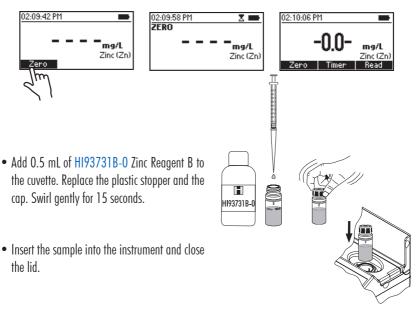
SPECIFICATIONS

Range	0.00 to 3.00 mg/L (as Zn)
Resolution	0.01 mg/L
Accuracy	\pm 0.03 mg/L \pm 3% of reading at 25 °C
Light Source	LED with narrow band interference filter @ 575 nm
Method	Adaptation of Standard Methods for the Examination of Water and Wastewater,
	18 th Edition, Zincon Method

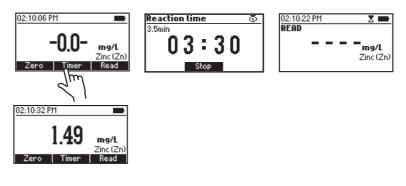
REQUIRED REAGENT


Code	Description	Quantity
HI93731A-0	Zinc Reagent A	1 packet
HI93731B-0	Zinc Reagent B	0.5 mL

REAGENT SETS

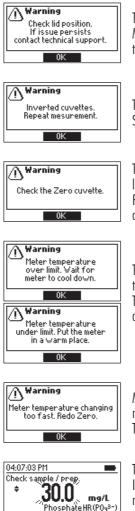

HI93731-01	Reagents for 100 tests
HI93731-03	Reagents for 300 tests
For other accessories	see ACCESSORIES section

MEASUREMENT PROCEDURE


- Select the Zinc method using the procedure described in the METHOD SELECTION section.
- Fill the graduated glass vial up to the 20 mL mark with the sample.
- Add one packet of H193731A-0 Zinc Reagent A, close the cylinder. Invert several times to mix until completely dissolved.
- Fill a cuvette with 10 mL of the reacted sample (up to the mark). Replace the plastic stopper and the cap.
- Insert the cuvette into the holder and close the lid.

• Press Zero. The display will show "-0.0-" when the meter is zeroed and ready for measurement.

• Press **Timer** and the display will show the countdown prior to the measurement or wait 3 minutes and 30 seconds and press **Read**. When the timer ends the meter will perform the reading. The instrument displays the results in **mg/L** of **zinc (Zn)**.



INTERFERENCES

- Iron above 7 mg/L
- Aluminum above 6 mg/L
- Copper, Manganese, Nickel above 5 mg/L
- Cadmium above 0.5 mg/L

11. WARNINGS & ERRORS

The instrument shows clear warning messages when erroneous conditions appear and when measured values are outside the expected range. The information below provides an explanation of the errors and warnings, and recommended action to be taken.

Read

'imer

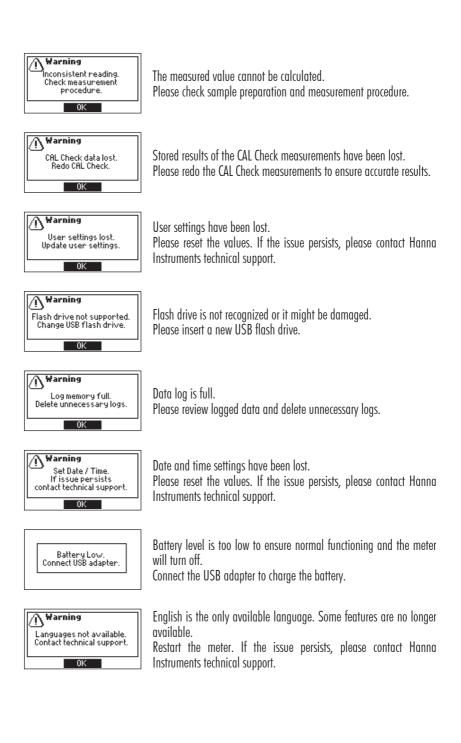
There is an excess amount of ambient light reaching the detector. Make sure the lid is closed before performing any measurements. If the issue persists, please contact Hanna Instruments technical support.

The sample and the zero cuvettes are inverted. Swap the cuvettes and repeat the measurement.

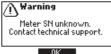
There is either too much light or the instrument can not adjust the light level.

Please check the preparation of the zero cuvette and that the sample does not contain any debris.

The meter is either overheating or its temperature has dropped too low to operate within published accuracy specifications.


The meter must be between 0 and 50 °C (32 and 122 °F) to perform any measurements.

Meter temperature has changed significantly since the zero measurement has been performed.


The zero measurement must be performed again.

The measured value is outside the limits of the method.

If possible, change the method range. Verify that the sample does not contain any debris. Check the sample preparation and the measurement preparation.



Real time clock is not accurate. Some features are no longer available. Restart the meter. If the issue persists, please contact Hanna Instruments technical support.

The device serial number can not be identified. Some features are no longer available.

Restart the meter. If the issue persists, please contact Hanna Instruments technical support.

Logged data is no longer accessible. Some features are no longer available.

Restart the meter. If the issue persists, please contact Hanna Instruments technical support.

Battery charge level is not accurate. Some features are no longer available.

Restart the meter. If the issue persists, please contact Hanna Instruments technical support.

A critical error has occurred.

Restart the meter. If the issue persists, please contact Hanna Instruments technical support.

12. STANDARD METHODS

Description	Range	Method
Alkalinity	0 to 500 mg/L (as CaCO ₃)	Colorimetric
Alkalinity, Marine	0 to 300 mg/L (as CaCO ₃)	Colorimetric
Aluminum	0.00 to 1.00 mg/L (as Al ³⁺)	Aluminon
Ammonia LR	0.00 to 3.00 mg/L (as NH ₃ -N)	Nessler
Ammonia MR	0.00 to 10.00 mg/L (as $\rm NH_3-N$)	Nessler
Ammonia HR	0.0 to 100.0 mg/L (as NH ₃ -N)	Nessler
Bromine	0.00 to 8.00 mg/L (as Br ₂)	DPD
Calcium	0 to 400 mg/L (as Ca ²⁺)	Oxalate
Calcium Marine	200 to 600 mg/L (as Ca ²⁺)	Zincon
Chloride	0.0 to 20.0 mg/L (as Cl⁻)	Mercury(II) Thiocyanate
Chlorine Dioxide	0.00 to 2.00 mg/L (as CIO_2)	Chlorophenol Red
Chlorine Dioxide, Rapid Method	0.00 to 2.00 mg/L (as ClO_2)	DPD
Chlorine, Free	0.00 to 5.00 mg/L (as Cl_2)	DPD
Chlorine, Free ULR	0.000 to 0.500 mg/L (as Cl_2)	DPD
Chlorine, Total	0.00 to 5.00 mg/L (as Cl_2)	DPD
Chlorine, Total ULR	0.000 to 0.500 mg/L (as Cl_2)	DPD
Chlorine, Total UHR	0 to 500 mg/L (as Cl ₂)	Standard Methods 4500-Cl
Chromium(VI) LR	0 to 300 µg/L (as Cr (VI))	Diphenylcarbohydrazide
Chromium(VI) HR	0 to 1000 µg/L (as Cr(VI))	Diphenylcarbohydrazide
Color of Water	0 to 500 PCU	Colorimetric Platinum Cobalt
Copper LR	0.000 to 1.500 mg/L (as Cu ²⁺)	Bicinchoninate
Copper HR	0.00 to 5.00 mg/L (as Cu ²⁺)	Bicinchoninate
Cyanuric Acid	0 to 80 mg/L (as CYA)	Turbidimetric
Fluoride LR	0.00 to 2.00 mg/L (as F ⁻)	SPADNS
Fluoride HR	0.0 to 20.0 mg/L (as F ⁻)	SPADNS
Hardness, Calcium	0.00 to 2.70 mg/L (as CaCO ₃)	Calmagite
Hardness, Magnesium	0.00 to 2.00 mg/L (as $CaCO_3$)	EDTA

Description	Range	Method
Hardness, Total LR	0 to 250 mg/L (as CaCO ₃)	EPA 130.1
Hardness, Total MR	200 to 500 mg/L (as CaCO ₃)	EPA 130.1
Hardness, Total HR	400 to 750 mg/L (as $CaCO_3$)	EPA 130.1
Hydrazine	0 to 400 μ g/L (as N $_2$ H $_4$)	p-Dimethylaminobenzaldehyde
lodine	0.0 to 12.5 mg/L (as I ₂)	DPD
Iron LR	0.000 to 1.600 mg/L (as Fe)	TPTZ
Iron HR	0.00 to 5.00 mg/L (as Fe)	Phenanthroline
Iron(II)	0.00 to 6.00 mg/L (as Fe ²⁺)	EPA 315B
lron(II)/(III)	0.00 to 6.00 mg/L (as Fe)	EPA 315B
Magnesium	0 to 150 mg/L (as Mg ²⁺)	Calmagite
Manganese LR	0 to 300 μ g/L (as Mn)	PAN
Manganese HR	0.0 to 20.0 mg/L (as Mn)	Periodate
Molybdenum	0.0 to 40.0 mg/L (as Mo ⁶⁺)	Mercaptoacetic Acid
Nickel LR	0.000 to 1.000 mg/L (as Ni)	PAN
Nickel HR	0.00 to 7.00 g/L (as Ni)	Colorimetric
Nitrate	0.0 to 30.0 mg/L (as NO ₃ ⁻ - N)	Cadmium reduction
Nitrite, Marine ULR	0 to 200 μ g/L (as NO $_2^-$ -N)	Diazotization
Nitrite LR	0 to 600 μ g/L (as NO $_2^-$ -N)	Diazotization
Nitrite HR	0 to 150 mg/L (as NO2 ⁻)	Ferrous Sulfate
Oxygen, Dissolved	0.0 to 10.0 mg/L (as 0_2)	Winkler
Oxygen Scavengers (Carbohydrazide)	0.00-1.50mg/L (as Carbohydrazide)	Iron Reduction
Oxygen Scavengers (DEHA)	0 to 1000 µg/L (as DEHA)	Iron Reduction
Oxygen Scavengers (Hydroquinone)	0.00-2.50mg/L (as Hydroquinone)	Iron Reduction
Oxygen Scavengers (Iso-Ascorbic Acid)	0.00-4.50mg/L (as Iso-Ascorbic Acid)	Iron Reduction
Ozone	0.00 to 2.00 mg/L (as 0 ₃)	DPD
рН	6.5 to 8.5 pH	Phenol Red
Phosphate, Marine ULR	0 to 200 µg/L (as P)	Ascorbic Acid
Phosphate LR	0.00 to 2.50 mg/L (as PO ₄ ³⁻)	Ascorbic Acid

Description	Range	Method
Phosphate HR	0.0 to 30.0 mg/L (as PO4 ³⁻)	Amino Acid
Potassium	0.0 to 20.0 mg/L (as K)	Tetraphenylborate
Silica LR	0.00 to 2.00 mg/L (as SiO ₂)	Heteropoly Blue
Silica HR	0 to 200 mg/L (as SiO ₂)	EPA
Silver	0.000 to 1.000 mg/L (as Ag)	PAN
Sulfate	0 to 150 mg/L (as SO4 ²⁻)	Barium Chloride
Surfactants, Anionic	0.00 to 3.50 mg/L (as SDBS)	EPA 425.1
Zinc	0.00 to 3.00 mg/L (as Zn)	Zincon

13. ACCESSORIES

13.1. REAGENT SETS

Code	Description
HI736-25	25 phosphate marine ULR tests
HI755-26	25 alkalinity marine tests
HI758-26	25 calcium marine tests
HI764-25	25 nitrite marine ULR tests
HI775-26	25 alkalinity fresh water tests
HI93700-01	100 ammonia LR tests
HI93700-03	300 ammonia LR tests
HI93701-01	100 chlorine free tests (powder)
HI93701-03	300 chlorine free tests (powder)
HI93701-F	300 chlorine free tests (liquid)
HI93701-T	300 chlorine total tests (liquid)
HI93702-01	100 copper HR tests
HI93702-03	300 copper HR tests
HI93703-52	100 ozone tests
HI93704-01	100 hydrazine tests
HI93704-03	300 hydrazine tests
HI93705-01	100 silica LR tests
HI93705-03	300 silica LR tests
HI93707-01	100 nitrite LR tests
HI93707-03	300 nitrite LR tests
HI93708-01	100 nitrite HR tests
HI93708-03	300 nitrite HR tests
HI93709-01	100 manganese HR tests
HI93709-03	300 manganese HR tests

Code	Description
HI93710-01	100 pH tests
HI93710-03	300 pH tests
HI93711-01	100 chlorine total tests (powder)
HI93711-03	300 chlorine total tests (powder)
HI93712-01	100 aluminum tests
HI93712-03	300 aluminum tests
HI93713-01	100 phosphate LR tests
HI93713-03	300 phosphate LR tests
HI93715-01	100 ammonia MR tests
HI93715-03	300 ammonia MR tests
HI93716-01	100 bromine tests
HI93716-03	300 bromine tests
HI93717-01	100 phosphate HR tests
HI93717-03	300 phosphate HR tests
HI93718-01	100 iodine tests
HI93718-03	300 iodine tests
HI93719-01	100 hardness magnesium tests
HI93719-03	300 hardness magnesium tests
HI93720-01	100 hardness calcium tests
HI93720-03	300 hardness calcium tests
HI93721-01	100 iron HR tests
HI93721-03	300 iron HR tests
HI93722-01	100 cyanuric acid tests
HI93722-03	300 cyanuric acid tests
HI93723-01	100 chromium(VI) HR tests
HI93723-03	300 chromium(VI) HR tests
HI93726-01	100 nickel HR tests

Code	Description
HI93726-03	300 nickel HR tests
HI93728-01	100 nitrate tests
HI93728-03	300 nitrate tests
HI93729-01	100 fluoride LR tests
HI93729-03	300 fluoride LR tests
HI93730-01	100 molybdenum tests
HI93730-03	300 molybdenum tests
HI93731-01	100 zinc tests
HI93731-03	300 zinc tests
HI93732-01	100 dissolved oxygen tests
HI93732-03	300 dissolved oxygen tests
HI93733-01	100 ammonia HR tests
HI93733-03	300 ammonia HR tests
HI93735-01	100 hardness total MR tests (200 to 500 mg/L)
HI93735-02	100 hardness total HR tests (400 to 750 mg/L)
HI93735-0	300 hardness total tests (LR - 100 tests, MR - 100 tests, HR - 100 tests)
HI93735-00	100 hardness total LR tests (0 to 250 mg/L)
HI93737-01	50 silver tests
HI93737-03	150 silver tests
HI93738-01	100 chlorine dioxide tests
HI93738-03	300 chlorine dioxide tests
HI93739-01	100 fluoride HR tests
HI93739-03	300 fluoride HR tests
HI93740-01	50 nickel LR tests
HI93740-03	150 nickel LR tests
HI93746-01	50 iron LR tests
HI93746-03	150 iron LR tests

Code	Description
HI93748-01	50 manganese LR tests
HI93748-03	150 manganese LR tests
HI93749-01	100 chromium(VI) LR tests
HI93749-03	300 chromium(VI) LR tests
HI93750-01	100 potassium tests
HI93750-03	300 potassium tests
HI93751-01	100 sulfate tests
HI93751-03	300 sulfate tests
HI937520-01	50 magnesium tests
HI937520-03	150 magnesium tests
HI937521-01	50 calcium tests
HI937521-03	150 calcium tests
HI93753-01	100 chloride tests
HI93753-03	300 chloride tests
HI93757-01	100 ozone tests
HI93757-03	300 ozone tests
HI95747-01	100 copper LR tests
HI95747-03	300 copper LR tests
HI95761-01	100 chlorine total ULR tests
HI95761-03	300 chlorine total ULR tests
HI95762-01	100 chlorine free ULR tests
HI95762-03	300 chlorine free ULR tests
HI95769-01	40 surfactants anionic tests
HI95771-01	100 chlorine total UHR tests
HI95771-03	300 chlorine total UHR tests
HI96770-01	100 silica HR tests
HI96770-03	300 silica HR tests

Code	Description
HI96773-01	50 oxygen scavengers tests
HI96773-03	150 oxygen scavengers tests
HI96776-01	100 iron(II) tests
HI96776-03	300 iron(II) tests
HI96777-01	100 iron(II)/(III) tests
HI96777-03	300 iron(II)/(III) tests
HI96779-01	100 chlorine dioxide (rapid) tests
HI96779-03	300 chlorine dioxide (rapid) tests

13.2. pH ELECTRODES

Code	Description
HI10530	Triple ceramic, double junction, low temperature glass, refillable pH electrode with conical tip and temperature sensor
HI10430	Triple ceramic, double junction, high temperature glass, refillable pH electrode with temperature sensor
HI11310	Glass body, double junction, refillable pH/temperature electrode
HI11311	Glass body, double junction, refillable pH/temperature electrode with enhanced diagnostics
HI12300	Plastic body, double junction, gel filled, non refillable pH/temperature electrode
HI12301	Plastic body, double junction, gel filled, non refillable pH/temperature electrode with enhanced diagnostics
HI10480	Glass body, double junction with temperature sensor for wine analysis
FC2320	Double junction, open reference, non refillable, electrolyte viscolene, PVDF body with conical tip, pH/temperature electrode
FC2100	Double junction, open reference, non refillable, electrolyte viscolene, glass body with conical tip, pH/temperature electrode
FC2020	Double junction, open reference, non refillable, electrolyte viscolene, PVDF body with conical tip, pH/temperature electrode

Note: The enhanced diagnostics information are not displayed by meter.

13.3. pH SOLUTIONS

BUFFER SOLUTIONS

Code	Description
HI70004P	pH 4.01 buffer sachet, 20 mL (25 pcs.)
HI70007P	pH 7.01 buffer sachet, 20 mL (25 pcs.)
HI70010P	pH 10.01 buffer sachet, 20 mL (25 pcs.)
HI7001L	pH 1.68 buffer solution, 500 mL
HI7004L	pH 4.01 buffer solution, 500 mL
HI7006L	pH 6.86 buffer solution, 500 mL
HI7007L	pH 7.01 buffer solution, 500 mL
HI7009L	pH 9.18 buffer solution, 500 mL
HI7010L	pH 10.01 buffer solution, 500 mL
HI8004L	pH 4.01 buffer solution in FDA approved bottle, 500 mL
HI8006L	pH 6.86 buffer solution in FDA approved bottle, 500 mL
HI8007L	pH 7.01 buffer solution in FDA approved bottle, 500 mL
HI8009L	pH 9.18 buffer solution in FDA approved bottle, 500 mL
HI8010L	pH 10.01 buffer solution in FDA approved bottle, 500 mL

ELECTRODE STORAGE SOLUTIONS

Code	Description
HI70300L	Storage solution, 500 mL
HI80300L	Storage solution in FDA approved bottle, 500 mL

ELECTRODE CLEANING SOLUTIONS

Code	Description
HI70000P	Electrode rinse sachet, 20 mL (25 pcs.)
HI7061L	General cleaning solution, 500 mL
HI7073L	Protein cleaning solution, 500 mL
HI7074L	Inorganic cleaning solution, 500 mL
HI7077L	Oil & fat cleaning solution, 500 mL
HI8061L	General cleaning solution in FDA approved bottle, 500 mL
HI8073L	Protein cleaning solution in FDA approved bottle, 500 mL
HI8077L	Oil & fat cleaning solution in FDA approved bottle, 500 mL

ELECTRODE REFILL ELECTROLYTE SOLUTIONS

Code	Description
HI7082	3.5M KCl electrolyte, 4x30 mL, for double junction electrodes
HI8082	3.5M KCl electrolyte in FDA approved bottle, 4x30 mL, for double junction

13.4. OTHER ACCESSORIES

Code	Description
HI72083300	carrying case
HI731318	cloth for wiping cuvettes (4 pcs.)
HI731331	glass cuvette (4 pcs.)
HI731335N	cap for cuvette (4 pcs.)
HI731340	200 μ L automatic pipette
HI731341	1000 μ L automatic pipette
HI731342	2000 μ L automatic pipette
HI740034P	cap for 100 mL beaker (10 pcs.)
HI740036P	100 mL plastic beaker (10 pcs.)
HI740038	60 mL glass bottle and stopper
HI740142P	1 mL graduated syringe (10 pcs)
HI740143	1 mL graduated syringe (6 pcs.)
HI740144	pipette tip (6 pcs.)
HI740157P	plastic refilling pipette (20 pcs.)
HI740220	25 mL graduated glass vial (2 pcs.)
HI740223	170 mL plastic beaker
HI740224	170 mL plastic beaker (12 pcs.)
HI740225	60 mL graduated syringe
HI740226	5 mL graduated syringe
HI740227	filter assembly
HI740228	filter disc (25 pcs.)
HI740229	100 mL graduated cylinder
DEMI-02	demineralizer

ACCESSORIES

Code	Description
HI75110/220E	USB power adapter, European plug
HI75110/220U	USB power adapter, USA plug
HI76404A	electrode holder
HI83300-11	CAL Check cuvette kit for H183300
HI83300-100	Sample preparation kit consisting of activated carbon for 50 tests, demineralizer bottle for 10 L of water, 100 mL graduated beaker with cap 170 mL graduated beaker with cap, 3 mL pipette, 60 mL syringe, 5 mL syringe, graduated cylinder, spoon, funnel, filtter paper (25 pcs.)
HI920015	USB to micro USB cable connector
HI93703-50	cuvette cleaning solution (230 mL)
HI93703-55	activated carbon (50 pcs.)

CERTIFICATION

All Hanna Instruments conform to the CE European Directives.

Disposal of Electrical & Electronic Equipment. The product should not be treated as household waste. Instead hand it over to the appropriate collection point for the recycling of electrical and electronic equipment which will conserve natural resources.

Disposal of waste batteries. This product contains batteries, do not dispose of them with other household waste. Hand them over to the appropriate collection point for recycling.

Ensuring proper product and battery disposal prevents potential negative consequences for the environment and human health. For more information, contact your city, your local household waste disposal service, the place of purchase or go to www.hannainst.com.

RECOMMENDATIONS FOR USERS

Before using this product, make sure it is entirely suitable for your specific application and for the environment in which it is used. Any variation introduced by the user to the supplied equipment may degrade the photometer's performance. For yours and the meter's safety do not use or store the photometer in hazardous environments.

WARRANTY

The HI83300 is warranted for two years against defects in workmanship and materials when used for its intended purpose and maintained according to instructions. This warranty is limited to repair or replacement free of charge. Damage due to accidents, misuse, tampering or lack of prescribed maintenance is not covered.

If service is required, contact your local Hanna Instruments Office. If under warranty, report the model number, date of purchase, serial number (engraved on the bottom of the meter) and the nature of the problem. If the repair is not covered by the warranty, you will be notified of the charges incurred. If the instrument is to be returned to Hanna Instruments, first obtain a Returned Goods Authorization (RGA) number from the Technical Service department and then send it with shipping costs prepaid. When shipping any instrument, make sure it is properly packed for complete protection.

Hanna Instruments reserves the right to modify the design, construction or appearance of its products without advance notice.

World Headquarters

Hanna Instruments Inc. Highland Industrial Park 584 Park East Drive Woonsocket, RI 02895 USA www.hannainst.com

MAN83300